Oblicz
\frac{1}{\left(x-6\right)\left(x+7\right)}
Rozwiń
\frac{1}{\left(x-6\right)\left(x+7\right)}
Wykres
Udostępnij
Skopiowano do schowka
\frac{x+6}{x^{2}-7^{2}}\times \frac{x-7}{\left(x+6\right)\left(x-6\right)}
Rozważ \left(x+7\right)\left(x-7\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x+6}{x^{2}-49}\times \frac{x-7}{\left(x+6\right)\left(x-6\right)}
Podnieś 7 do potęgi 2, aby uzyskać 49.
\frac{x+6}{x^{2}-49}\times \frac{x-7}{x^{2}-6^{2}}
Rozważ \left(x+6\right)\left(x-6\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x+6}{x^{2}-49}\times \frac{x-7}{x^{2}-36}
Podnieś 6 do potęgi 2, aby uzyskać 36.
\frac{\left(x+6\right)\left(x-7\right)}{\left(x^{2}-49\right)\left(x^{2}-36\right)}
Pomnóż \frac{x+6}{x^{2}-49} przez \frac{x-7}{x^{2}-36}, mnożąc oba liczniki i oba mianowniki.
\frac{\left(x-7\right)\left(x+6\right)}{\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+7\right)}
Rozłóż na czynniki wyrażenie, dla którego jeszcze tego nie zrobiono.
\frac{1}{\left(x-6\right)\left(x+7\right)}
Skróć wartość \left(x-7\right)\left(x+6\right) w liczniku i mianowniku.
\frac{1}{x^{2}+x-42}
Rozwiń wyrażenie.
\frac{x+6}{x^{2}-7^{2}}\times \frac{x-7}{\left(x+6\right)\left(x-6\right)}
Rozważ \left(x+7\right)\left(x-7\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x+6}{x^{2}-49}\times \frac{x-7}{\left(x+6\right)\left(x-6\right)}
Podnieś 7 do potęgi 2, aby uzyskać 49.
\frac{x+6}{x^{2}-49}\times \frac{x-7}{x^{2}-6^{2}}
Rozważ \left(x+6\right)\left(x-6\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x+6}{x^{2}-49}\times \frac{x-7}{x^{2}-36}
Podnieś 6 do potęgi 2, aby uzyskać 36.
\frac{\left(x+6\right)\left(x-7\right)}{\left(x^{2}-49\right)\left(x^{2}-36\right)}
Pomnóż \frac{x+6}{x^{2}-49} przez \frac{x-7}{x^{2}-36}, mnożąc oba liczniki i oba mianowniki.
\frac{\left(x-7\right)\left(x+6\right)}{\left(x-7\right)\left(x-6\right)\left(x+6\right)\left(x+7\right)}
Rozłóż na czynniki wyrażenie, dla którego jeszcze tego nie zrobiono.
\frac{1}{\left(x-6\right)\left(x+7\right)}
Skróć wartość \left(x-7\right)\left(x+6\right) w liczniku i mianowniku.
\frac{1}{x^{2}+x-42}
Rozwiń wyrażenie.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}