Oblicz
1572584048032918633353217-1111984844349868137938112\sqrt{2}\approx -268435456
Udostępnij
Skopiowano do schowka
\frac{\left(886731088897-627013566048\sqrt{2}\right)\left(886731088897-627013566048\sqrt{2}\right)}{\left(886731088897+627013566048\sqrt{2}\right)\left(886731088897-627013566048\sqrt{2}\right)}
Umożliwia racjonalizację mianownika \frac{886731088897-627013566048\sqrt{2}}{886731088897+627013566048\sqrt{2}} przez mnożenie licznika i mianownika przez 886731088897-627013566048\sqrt{2}.
\frac{\left(886731088897-627013566048\sqrt{2}\right)\left(886731088897-627013566048\sqrt{2}\right)}{886731088897^{2}-\left(627013566048\sqrt{2}\right)^{2}}
Rozważ \left(886731088897+627013566048\sqrt{2}\right)\left(886731088897-627013566048\sqrt{2}\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(886731088897-627013566048\sqrt{2}\right)^{2}}{886731088897^{2}-\left(627013566048\sqrt{2}\right)^{2}}
Pomnóż 886731088897-627013566048\sqrt{2} przez 886731088897-627013566048\sqrt{2}, aby uzyskać \left(886731088897-627013566048\sqrt{2}\right)^{2}.
\frac{786292024016459316676609-1111984844349868137938112\sqrt{2}+393146012008229658338304\left(\sqrt{2}\right)^{2}}{886731088897^{2}-\left(627013566048\sqrt{2}\right)^{2}}
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(886731088897-627013566048\sqrt{2}\right)^{2}.
\frac{786292024016459316676609-1111984844349868137938112\sqrt{2}+393146012008229658338304\times 2}{886731088897^{2}-\left(627013566048\sqrt{2}\right)^{2}}
Kwadrat liczby \sqrt{2} to 2.
\frac{786292024016459316676609-1111984844349868137938112\sqrt{2}+786292024016459316676608}{886731088897^{2}-\left(627013566048\sqrt{2}\right)^{2}}
Pomnóż 393146012008229658338304 przez 2, aby uzyskać 786292024016459316676608.
\frac{1572584048032918633353217-1111984844349868137938112\sqrt{2}}{886731088897^{2}-\left(627013566048\sqrt{2}\right)^{2}}
Dodaj 786292024016459316676609 i 786292024016459316676608, aby uzyskać 1572584048032918633353217.
\frac{1572584048032918633353217-1111984844349868137938112\sqrt{2}}{786292024016459316676609-\left(627013566048\sqrt{2}\right)^{2}}
Podnieś 886731088897 do potęgi 2, aby uzyskać 786292024016459316676609.
\frac{1572584048032918633353217-1111984844349868137938112\sqrt{2}}{786292024016459316676609-627013566048^{2}\left(\sqrt{2}\right)^{2}}
Rozwiń \left(627013566048\sqrt{2}\right)^{2}.
\frac{1572584048032918633353217-1111984844349868137938112\sqrt{2}}{786292024016459316676609-393146012008229658338304\left(\sqrt{2}\right)^{2}}
Podnieś 627013566048 do potęgi 2, aby uzyskać 393146012008229658338304.
\frac{1572584048032918633353217-1111984844349868137938112\sqrt{2}}{786292024016459316676609-393146012008229658338304\times 2}
Kwadrat liczby \sqrt{2} to 2.
\frac{1572584048032918633353217-1111984844349868137938112\sqrt{2}}{786292024016459316676609-786292024016459316676608}
Pomnóż 393146012008229658338304 przez 2, aby uzyskać 786292024016459316676608.
\frac{1572584048032918633353217-1111984844349868137938112\sqrt{2}}{1}
Odejmij 786292024016459316676608 od 786292024016459316676609, aby uzyskać 1.
1572584048032918633353217-1111984844349868137938112\sqrt{2}
Wynikiem dzielenia liczby przez jeden jest ta sama liczba.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}