Oblicz
\frac{\left(x-3\right)\left(x+4\right)\left(x^{2}-1\right)}{12}
Rozwiń
\frac{x^{4}}{12}+\frac{x^{3}}{12}-\frac{13x^{2}}{12}-\frac{x}{12}+1
Wykres
Udostępnij
Skopiowano do schowka
\left(\frac{1}{12}x+\frac{1}{12}\times 4\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Użyj właściwości rozdzielności, aby pomnożyć \frac{1}{12} przez x+4.
\left(\frac{1}{12}x+\frac{4}{12}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Pomnóż \frac{1}{12} przez 4, aby uzyskać \frac{4}{12}.
\left(\frac{1}{12}x+\frac{1}{3}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Zredukuj ułamek \frac{4}{12} do najmniejszych czynników przez odejmowanie i skracanie ułamka 4.
\left(\frac{1}{12}xx+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Aby zastosować właściwość rozdzielności, pomnóż każdy czynnik wartości \frac{1}{12}x+\frac{1}{3} przez każdy czynnik wartości x+1.
\left(\frac{1}{12}x^{2}+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Pomnóż x przez x, aby uzyskać x^{2}.
\left(\frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Połącz \frac{1}{12}x i \frac{1}{3}x, aby uzyskać \frac{5}{12}x.
\left(\frac{1}{12}x^{2}x+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Aby zastosować właściwość rozdzielności, pomnóż każdy czynnik wartości \frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3} przez każdy czynnik wartości x-1.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 1, aby uzyskać 3.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Pomnóż x przez x, aby uzyskać x^{2}.
\left(\frac{1}{12}x^{3}-\frac{1}{12}x^{2}+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Pomnóż \frac{1}{12} przez -1, aby uzyskać -\frac{1}{12}.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Połącz -\frac{1}{12}x^{2} i \frac{5}{12}x^{2}, aby uzyskać \frac{1}{3}x^{2}.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{5}{12}x+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Pomnóż \frac{5}{12} przez -1, aby uzyskać -\frac{5}{12}.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Połącz -\frac{5}{12}x i \frac{1}{3}x, aby uzyskać -\frac{1}{12}x.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3}\right)\left(x-3\right)
Pomnóż \frac{1}{3} przez -1, aby uzyskać -\frac{1}{3}.
\frac{1}{12}x^{3}x+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Aby zastosować właściwość rozdzielności, pomnóż każdy czynnik wartości \frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3} przez każdy czynnik wartości x-3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 3 i 1, aby uzyskać 4.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 1, aby uzyskać 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnóż x przez x, aby uzyskać x^{2}.
\frac{1}{12}x^{4}+\frac{-3}{12}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnóż \frac{1}{12} przez -3, aby uzyskać \frac{-3}{12}.
\frac{1}{12}x^{4}-\frac{1}{4}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Zredukuj ułamek \frac{-3}{12} do najmniejszych czynników przez odejmowanie i skracanie ułamka 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Połącz -\frac{1}{4}x^{3} i \frac{1}{3}x^{3}, aby uzyskać \frac{1}{12}x^{3}.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{-3}{3}x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnóż \frac{1}{3} przez -3, aby uzyskać \frac{-3}{3}.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Podziel -3 przez 3, aby uzyskać -1.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Połącz -x^{2} i -\frac{1}{12}x^{2}, aby uzyskać -\frac{13}{12}x^{2}.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{-\left(-3\right)}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pokaż wartość -\frac{1}{12}\left(-3\right) jako pojedynczy ułamek.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{3}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnóż -1 przez -3, aby uzyskać 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{1}{4}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Zredukuj ułamek \frac{3}{12} do najmniejszych czynników przez odejmowanie i skracanie ułamka 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x-\frac{1}{3}\left(-3\right)
Połącz \frac{1}{4}x i -\frac{1}{3}x, aby uzyskać -\frac{1}{12}x.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{-\left(-3\right)}{3}
Pokaż wartość -\frac{1}{3}\left(-3\right) jako pojedynczy ułamek.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{3}{3}
Pomnóż -1 przez -3, aby uzyskać 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+1
Podziel 3 przez 3, aby uzyskać 1.
\left(\frac{1}{12}x+\frac{1}{12}\times 4\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Użyj właściwości rozdzielności, aby pomnożyć \frac{1}{12} przez x+4.
\left(\frac{1}{12}x+\frac{4}{12}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Pomnóż \frac{1}{12} przez 4, aby uzyskać \frac{4}{12}.
\left(\frac{1}{12}x+\frac{1}{3}\right)\left(x+1\right)\left(x-1\right)\left(x-3\right)
Zredukuj ułamek \frac{4}{12} do najmniejszych czynników przez odejmowanie i skracanie ułamka 4.
\left(\frac{1}{12}xx+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Aby zastosować właściwość rozdzielności, pomnóż każdy czynnik wartości \frac{1}{12}x+\frac{1}{3} przez każdy czynnik wartości x+1.
\left(\frac{1}{12}x^{2}+\frac{1}{12}x+\frac{1}{3}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Pomnóż x przez x, aby uzyskać x^{2}.
\left(\frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3}\right)\left(x-1\right)\left(x-3\right)
Połącz \frac{1}{12}x i \frac{1}{3}x, aby uzyskać \frac{5}{12}x.
\left(\frac{1}{12}x^{2}x+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Aby zastosować właściwość rozdzielności, pomnóż każdy czynnik wartości \frac{1}{12}x^{2}+\frac{5}{12}x+\frac{1}{3} przez każdy czynnik wartości x-1.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}xx+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 1, aby uzyskać 3.
\left(\frac{1}{12}x^{3}+\frac{1}{12}x^{2}\left(-1\right)+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Pomnóż x przez x, aby uzyskać x^{2}.
\left(\frac{1}{12}x^{3}-\frac{1}{12}x^{2}+\frac{5}{12}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Pomnóż \frac{1}{12} przez -1, aby uzyskać -\frac{1}{12}.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}+\frac{5}{12}x\left(-1\right)+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Połącz -\frac{1}{12}x^{2} i \frac{5}{12}x^{2}, aby uzyskać \frac{1}{3}x^{2}.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{5}{12}x+\frac{1}{3}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Pomnóż \frac{5}{12} przez -1, aby uzyskać -\frac{5}{12}.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x+\frac{1}{3}\left(-1\right)\right)\left(x-3\right)
Połącz -\frac{5}{12}x i \frac{1}{3}x, aby uzyskać -\frac{1}{12}x.
\left(\frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3}\right)\left(x-3\right)
Pomnóż \frac{1}{3} przez -1, aby uzyskać -\frac{1}{3}.
\frac{1}{12}x^{3}x+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Aby zastosować właściwość rozdzielności, pomnóż każdy czynnik wartości \frac{1}{12}x^{3}+\frac{1}{3}x^{2}-\frac{1}{12}x-\frac{1}{3} przez każdy czynnik wartości x-3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{2}x+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 3 i 1, aby uzyskać 4.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}xx-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 1, aby uzyskać 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}\left(-3\right)+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnóż x przez x, aby uzyskać x^{2}.
\frac{1}{12}x^{4}+\frac{-3}{12}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnóż \frac{1}{12} przez -3, aby uzyskać \frac{-3}{12}.
\frac{1}{12}x^{4}-\frac{1}{4}x^{3}+\frac{1}{3}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Zredukuj ułamek \frac{-3}{12} do najmniejszych czynników przez odejmowanie i skracanie ułamka 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{1}{3}x^{2}\left(-3\right)-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Połącz -\frac{1}{4}x^{3} i \frac{1}{3}x^{3}, aby uzyskać \frac{1}{12}x^{3}.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}+\frac{-3}{3}x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnóż \frac{1}{3} przez -3, aby uzyskać \frac{-3}{3}.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-x^{2}-\frac{1}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Podziel -3 przez 3, aby uzyskać -1.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x\left(-3\right)-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Połącz -x^{2} i -\frac{1}{12}x^{2}, aby uzyskać -\frac{13}{12}x^{2}.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{-\left(-3\right)}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pokaż wartość -\frac{1}{12}\left(-3\right) jako pojedynczy ułamek.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{3}{12}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Pomnóż -1 przez -3, aby uzyskać 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}+\frac{1}{4}x-\frac{1}{3}x-\frac{1}{3}\left(-3\right)
Zredukuj ułamek \frac{3}{12} do najmniejszych czynników przez odejmowanie i skracanie ułamka 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x-\frac{1}{3}\left(-3\right)
Połącz \frac{1}{4}x i -\frac{1}{3}x, aby uzyskać -\frac{1}{12}x.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{-\left(-3\right)}{3}
Pokaż wartość -\frac{1}{3}\left(-3\right) jako pojedynczy ułamek.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+\frac{3}{3}
Pomnóż -1 przez -3, aby uzyskać 3.
\frac{1}{12}x^{4}+\frac{1}{12}x^{3}-\frac{13}{12}x^{2}-\frac{1}{12}x+1
Podziel 3 przez 3, aby uzyskać 1.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}