Rozwiąż względem y
y=-\frac{3\sqrt{x}z}{2\left(-3z+\sqrt{x}\right)}
z\neq 0\text{ and }\left(z<0\text{ or }x\neq 9z^{2}\right)\text{ and }x>0
Rozwiąż względem x
x=36\times \left(\frac{yz}{2y+3z}\right)^{2}
\left(y>0\text{ and }y<-\frac{3z}{2}\right)\text{ or }\left(z>0\text{ and }y<-\frac{3z}{2}\right)\text{ or }\left(z>0\text{ and }y>0\right)
Udostępnij
Skopiowano do schowka
6yzx^{-\frac{1}{2}}=3z+2y
Zmienna y nie może być równa 0, ponieważ nie zdefiniowano dzielenia przez zero. Pomnóż obie strony równania przez 6yz (najmniejsza wspólna wielokrotność wartości 2y,3z).
6yzx^{-\frac{1}{2}}-2y=3z
Odejmij 2y od obu stron.
\left(6zx^{-\frac{1}{2}}-2\right)y=3z
Połącz wszystkie czynniki zawierające y.
\left(\frac{6z}{\sqrt{x}}-2\right)y=3z
Równanie jest w postaci standardowej.
\frac{\left(\frac{6z}{\sqrt{x}}-2\right)y}{\frac{6z}{\sqrt{x}}-2}=\frac{3z}{\frac{6z}{\sqrt{x}}-2}
Podziel obie strony przez 6zx^{-\frac{1}{2}}-2.
y=\frac{3z}{\frac{6z}{\sqrt{x}}-2}
Dzielenie przez 6zx^{-\frac{1}{2}}-2 cofa mnożenie przez 6zx^{-\frac{1}{2}}-2.
y=\frac{3\sqrt{x}z}{2\left(3z-\sqrt{x}\right)}
Podziel 3z przez 6zx^{-\frac{1}{2}}-2.
y=\frac{3\sqrt{x}z}{2\left(3z-\sqrt{x}\right)}\text{, }y\neq 0
Zmienna y nie może być równa 0.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}