Oblicz
x
Różniczkuj względem x
1
Wykres
Udostępnij
Skopiowano do schowka
\frac{x^{4}x^{3}}{x\times \frac{1}{2}xx\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 3 i 1, aby uzyskać 4.
\frac{x^{7}}{x\times \frac{1}{2}xx\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 4 i 3, aby uzyskać 7.
\frac{x^{7}}{x^{2}\times \frac{1}{2}x\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}}
Pomnóż x przez x, aby uzyskać x^{2}.
\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 1, aby uzyskać 3.
\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{2}\times \frac{1}{2}x\times \frac{1}{2}}{x^{2}xx^{3}}
Pomnóż x przez x, aby uzyskać x^{2}.
\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{2}xx^{3}}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 1, aby uzyskać 3.
\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{3}x^{3}}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 1, aby uzyskać 3.
\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 3 i 3, aby uzyskać 6.
\frac{x^{4}}{\frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}}
Skróć wartość x^{3} w liczniku i mianowniku.
\frac{x^{4}}{\frac{1}{4}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}}
Pomnóż \frac{1}{2} przez \frac{1}{2}, aby uzyskać \frac{1}{4}.
x^{4}\times 4\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}}
Podziel x^{4} przez \frac{1}{4}, mnożąc x^{4} przez odwrotność \frac{1}{4}.
x^{4}\times 4\times \frac{\frac{1}{2}\times \frac{1}{2}}{x^{3}}
Skróć wartość x^{3} w liczniku i mianowniku.
x^{4}\times 4\times \frac{\frac{1}{4}}{x^{3}}
Pomnóż \frac{1}{2} przez \frac{1}{2}, aby uzyskać \frac{1}{4}.
x^{4}\times 4\times \frac{1}{4x^{3}}
Pokaż wartość \frac{\frac{1}{4}}{x^{3}} jako pojedynczy ułamek.
\frac{x^{4}}{4x^{3}}\times 4
Pokaż wartość x^{4}\times \frac{1}{4x^{3}} jako pojedynczy ułamek.
\frac{x}{4}\times 4
Skróć wartość x^{3} w liczniku i mianowniku.
x
Skróć wartości 4 i 4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}x^{3}}{x\times \frac{1}{2}xx\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}})
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 3 i 1, aby uzyskać 4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{7}}{x\times \frac{1}{2}xx\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}})
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 4 i 3, aby uzyskać 7.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{7}}{x^{2}\times \frac{1}{2}x\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}})
Pomnóż x przez x, aby uzyskać x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x\times \frac{1}{2}xx\times \frac{1}{2}}{x^{2}xx^{3}})
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 1, aby uzyskać 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{2}\times \frac{1}{2}x\times \frac{1}{2}}{x^{2}xx^{3}})
Pomnóż x przez x, aby uzyskać x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{2}xx^{3}})
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 1, aby uzyskać 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{3}x^{3}})
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 1, aby uzyskać 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{7}}{x^{3}\times \frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}})
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 3 i 3, aby uzyskać 6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}}{\frac{1}{2}\times \frac{1}{2}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}})
Skróć wartość x^{3} w liczniku i mianowniku.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}}{\frac{1}{4}}\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}})
Pomnóż \frac{1}{2} przez \frac{1}{2}, aby uzyskać \frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}\times 4\times \frac{x^{3}\times \frac{1}{2}\times \frac{1}{2}}{x^{6}})
Podziel x^{4} przez \frac{1}{4}, mnożąc x^{4} przez odwrotność \frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}\times 4\times \frac{\frac{1}{2}\times \frac{1}{2}}{x^{3}})
Skróć wartość x^{3} w liczniku i mianowniku.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}\times 4\times \frac{\frac{1}{4}}{x^{3}})
Pomnóż \frac{1}{2} przez \frac{1}{2}, aby uzyskać \frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}\times 4\times \frac{1}{4x^{3}})
Pokaż wartość \frac{\frac{1}{4}}{x^{3}} jako pojedynczy ułamek.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}}{4x^{3}}\times 4)
Pokaż wartość x^{4}\times \frac{1}{4x^{3}} jako pojedynczy ułamek.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{4}\times 4)
Skróć wartość x^{3} w liczniku i mianowniku.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Skróć wartości 4 i 4.
x^{1-1}
Pochodna ax^{n} jest nax^{n-1}.
x^{0}
Odejmij 1 od 1.
1
Dla dowolnego czynnika t oprócz 0 spełnione jest t^{0}=1.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}