Przejdź do głównej zawartości
Oblicz
Tick mark Image
Różniczkuj względem a
Tick mark Image

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Najmniejsza wspólna wielokrotność wartości a-1 i a+1 to \left(a-1\right)\left(a+1\right). Pomnóż \frac{a^{5}}{a-1} przez \frac{a+1}{a+1}. Pomnóż \frac{a^{2}}{a+1} przez \frac{a-1}{a-1}.
\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Ponieważ \frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} i \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} mają ten sam mianownik, Odejmij je przez odjęcie ich liczników.
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Wykonaj operacje mnożenia w równaniu a^{5}\left(a+1\right)-a^{2}\left(a-1\right).
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Najmniejsza wspólna wielokrotność wartości \left(a-1\right)\left(a+1\right) i a-1 to \left(a-1\right)\left(a+1\right). Pomnóż \frac{1}{a-1} przez \frac{a+1}{a+1}.
\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Ponieważ \frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} i \frac{a+1}{\left(a-1\right)\left(a+1\right)} mają ten sam mianownik, Odejmij je przez odjęcie ich liczników.
\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Wykonaj operacje mnożenia w równaniu a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right).
\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Rozłóż na czynniki wyrażenia, dla których jeszcze tego nie zrobiono, w równaniu \frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1}
Skróć wartość a-1 w liczniku i mianowniku.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1}
Ponieważ \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} i \frac{1}{a+1} mają ten sam mianownik, Dodaj je przez dodanie ich liczników.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}
Połącz podobne czynniki w równaniu a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1.
\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1}
Rozłóż na czynniki wyrażenia, dla których jeszcze tego nie zrobiono, w równaniu \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}.
\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)
Skróć wartość a+1 w liczniku i mianowniku.
a^{4}+a^{3}+a^{2}+2
Rozwiń wyrażenie.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Najmniejsza wspólna wielokrotność wartości a-1 i a+1 to \left(a-1\right)\left(a+1\right). Pomnóż \frac{a^{5}}{a-1} przez \frac{a+1}{a+1}. Pomnóż \frac{a^{2}}{a+1} przez \frac{a-1}{a-1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Ponieważ \frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} i \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} mają ten sam mianownik, Odejmij je przez odjęcie ich liczników.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Wykonaj operacje mnożenia w równaniu a^{5}\left(a+1\right)-a^{2}\left(a-1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Najmniejsza wspólna wielokrotność wartości \left(a-1\right)\left(a+1\right) i a-1 to \left(a-1\right)\left(a+1\right). Pomnóż \frac{1}{a-1} przez \frac{a+1}{a+1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Ponieważ \frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} i \frac{a+1}{\left(a-1\right)\left(a+1\right)} mają ten sam mianownik, Odejmij je przez odjęcie ich liczników.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Wykonaj operacje mnożenia w równaniu a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Rozłóż na czynniki wyrażenia, dla których jeszcze tego nie zrobiono, w równaniu \frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1})
Skróć wartość a-1 w liczniku i mianowniku.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1})
Ponieważ \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} i \frac{1}{a+1} mają ten sam mianownik, Dodaj je przez dodanie ich liczników.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1})
Połącz podobne czynniki w równaniu a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1})
Rozłóż na czynniki wyrażenia, dla których jeszcze tego nie zrobiono, w równaniu \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right))
Skróć wartość a+1 w liczniku i mianowniku.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{4}+a^{3}+a^{2}+2)
Rozwiń wyrażenie.
4a^{4-1}+3a^{3-1}+2a^{2-1}
Pochodna wielomianu jest sumą pochodnych jego czynników. Pochodna dowolnego czynnika stałego wynosi 0. Pochodna czynnika ax^{n} wynosi nax^{n-1}.
4a^{3}+3a^{3-1}+2a^{2-1}
Odejmij 1 od 4.
4a^{3}+3a^{2}+2a^{2-1}
Odejmij 1 od 3.
4a^{3}+3a^{2}+2a^{1}
Odejmij 1 od 2.
4a^{3}+3a^{2}+2a
Dla dowolnego czynnika t spełnione jest t^{1}=t.