Przejdź do głównej zawartości
Oblicz
Tick mark Image
Różniczkuj względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\frac{4^{1}\sqrt{x}}{8^{1}\sqrt[3]{x}}
Użyj reguł dotyczących wykładników, aby uprościć wyrażenie.
\frac{4^{1}x^{\frac{1}{2}-\frac{1}{3}}}{8^{1}}
Aby podzielić potęgi o jednakowej podstawie, odejmij wykładnik mianownika od wykładnika licznika.
\frac{4^{1}\sqrt[6]{x}}{8^{1}}
Odejmij \frac{1}{2} od \frac{1}{3}, znajdując wspólny mianownik i odejmując liczniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
\frac{1}{2}\sqrt[6]{x}
Zredukuj ułamek \frac{4}{8} do najmniejszych czynników przez odejmowanie i skracanie ułamka 4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{8}x^{\frac{1}{2}-\frac{1}{3}})
Aby podzielić potęgi o jednakowej podstawie, odejmij wykładnik mianownika od wykładnika licznika.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2}\sqrt[6]{x})
Wykonaj operacje arytmetyczne.
\frac{1}{6}\times \frac{1}{2}x^{\frac{1}{6}-1}
Pochodna wielomianu jest sumą pochodnych jego czynników. Pochodna dowolnego czynnika stałego wynosi 0. Pochodna czynnika ax^{n} wynosi nax^{n-1}.
\frac{1}{12}x^{-\frac{5}{6}}
Wykonaj operacje arytmetyczne.