Oblicz
\frac{1225\left(xy\right)^{6}}{4096q^{9}p^{20}}
Różniczkuj względem x
\frac{3675x^{5}y^{6}}{2048q^{9}p^{20}}
Udostępnij
Skopiowano do schowka
\frac{\frac{35x^{3}y^{3}\times 7xy}{8p^{5}q^{4}\times 64pq}}{\frac{8p^{14}q^{4}}{5x^{2}y^{2}}}
Pomnóż \frac{35x^{3}y^{3}}{8p^{5}q^{4}} przez \frac{7xy}{64pq}, mnożąc oba liczniki i oba mianowniki.
\frac{35x^{3}y^{3}\times 7xy\times 5x^{2}y^{2}}{8p^{5}q^{4}\times 64pq\times 8p^{14}q^{4}}
Podziel \frac{35x^{3}y^{3}\times 7xy}{8p^{5}q^{4}\times 64pq} przez \frac{8p^{14}q^{4}}{5x^{2}y^{2}}, mnożąc \frac{35x^{3}y^{3}\times 7xy}{8p^{5}q^{4}\times 64pq} przez odwrotność \frac{8p^{14}q^{4}}{5x^{2}y^{2}}.
\frac{35x^{4}y^{3}\times 7y\times 5x^{2}y^{2}}{8p^{5}q^{4}\times 64pq\times 8p^{14}q^{4}}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 3 i 1, aby uzyskać 4.
\frac{35x^{6}y^{3}\times 7y\times 5y^{2}}{8p^{5}q^{4}\times 64pq\times 8p^{14}q^{4}}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 4 i 2, aby uzyskać 6.
\frac{35x^{6}y^{4}\times 7\times 5y^{2}}{8p^{5}q^{4}\times 64pq\times 8p^{14}q^{4}}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 3 i 1, aby uzyskać 4.
\frac{35x^{6}y^{6}\times 7\times 5}{8p^{5}q^{4}\times 64pq\times 8p^{14}q^{4}}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 4 i 2, aby uzyskać 6.
\frac{245x^{6}y^{6}\times 5}{8p^{5}q^{4}\times 64pq\times 8p^{14}q^{4}}
Pomnóż 35 przez 7, aby uzyskać 245.
\frac{1225x^{6}y^{6}}{8p^{5}q^{4}\times 64pq\times 8p^{14}q^{4}}
Pomnóż 245 przez 5, aby uzyskać 1225.
\frac{1225x^{6}y^{6}}{8p^{6}q^{4}\times 64q\times 8p^{14}q^{4}}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 5 i 1, aby uzyskać 6.
\frac{1225x^{6}y^{6}}{8p^{20}q^{4}\times 64q\times 8q^{4}}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 6 i 14, aby uzyskać 20.
\frac{1225x^{6}y^{6}}{8p^{20}q^{5}\times 64\times 8q^{4}}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 4 i 1, aby uzyskać 5.
\frac{1225x^{6}y^{6}}{8p^{20}q^{9}\times 64\times 8}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 5 i 4, aby uzyskać 9.
\frac{1225x^{6}y^{6}}{512p^{20}q^{9}\times 8}
Pomnóż 8 przez 64, aby uzyskać 512.
\frac{1225x^{6}y^{6}}{4096p^{20}q^{9}}
Pomnóż 512 przez 8, aby uzyskać 4096.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}