Oblicz
\frac{2x^{3}}{3}
Różniczkuj względem x
2x^{2}
Udostępnij
Skopiowano do schowka
\frac{2x^{2}y^{2}}{1x^{-1}y^{2}\times 3}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i -3, aby uzyskać -1.
\frac{2x^{2}}{3\times \frac{1}{x}}
Skróć wartość y^{2} w liczniku i mianowniku.
\frac{2x^{3}}{3}
Aby podzielić potęgi o jednakowej podstawie, odejmij wykładnik mianownika od wykładnika licznika.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2y^{2}x^{3}}{3y^{2}}x^{2-2})
Aby podzielić potęgi o jednakowej podstawie, odejmij wykładnik mianownika od wykładnika licznika.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{3}}{3}x^{0})
Wykonaj operacje arytmetyczne.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{3}}{3})
Dla dowolnej liczby a oprócz 0 spełnione jest a^{0}=1.
0
Pochodna czynnika stałego wynosi 0.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}