Rozwiąż względem x
x=0
Wykres
Udostępnij
Skopiowano do schowka
2\times 10x=2\left(0\times 6-x\right)\times 10\times 3
Pomnóż obie strony równania przez 2.
20x=2\left(0\times 6-x\right)\times 10\times 3
Pomnóż 2 przez 10, aby uzyskać 20.
20x=2\left(0-x\right)\times 10\times 3
Pomnóż 0 przez 6, aby uzyskać 0.
20x=2\left(-1\right)x\times 10\times 3
Wynikiem dodania zera do dowolnej wartości jest ta sama wartość.
20x=-2x\times 10\times 3
Pomnóż 2 przez -1, aby uzyskać -2.
20x=-20x\times 3
Pomnóż -2 przez 10, aby uzyskać -20.
20x=-60x
Pomnóż -20 przez 3, aby uzyskać -60.
20x+60x=0
Dodaj 60x do obu stron.
80x=0
Połącz 20x i 60x, aby uzyskać 80x.
x=0
Iloczyn dwóch liczb jest równy 0, jeśli co najmniej jedna z nich jest równa 0. Liczba 80 nie jest równa 0, więc wartość x musi być równa 0.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}