Sprawdź
fałsz
Udostępnij
Skopiowano do schowka
\frac{211}{34}=\frac{1\times 10^{-5}\times 2\times 0\times 0\times 86}{16\times 10^{-3}\times 60\times 0\times 0\times 955}
Skróć wartość 0 w liczniku i mianowniku.
\frac{211}{34}=\frac{86\times 10^{-5}}{955\times 10^{-3}}
Skróć wartość 0 w liczniku i mianowniku.
\frac{211}{34}=\frac{86}{955\times 10^{2}}
Aby podzielić potęgi o jednakowej podstawie, odejmij wykładnik mianownika od wykładnika licznika.
\frac{211}{34}=\frac{86}{955\times 100}
Podnieś 10 do potęgi 2, aby uzyskać 100.
\frac{211}{34}=\frac{86}{95500}
Pomnóż 955 przez 100, aby uzyskać 95500.
\frac{211}{34}=\frac{43}{47750}
Zredukuj ułamek \frac{86}{95500} do najmniejszych czynników przez odejmowanie i skracanie ułamka 2.
\frac{5037625}{811750}=\frac{731}{811750}
Najmniejsza wspólna wielokrotność wartości 34 i 47750 to 811750. Przekonwertuj wartości \frac{211}{34} i \frac{43}{47750} na ułamki z mianownikiem 811750.
\text{false}
Porównaj wartości \frac{5037625}{811750} i \frac{731}{811750}.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}