Przejdź do głównej zawartości
Oblicz
Tick mark Image
Różniczkuj względem k
Tick mark Image

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\frac{-15k^{2}}{15\left(k+3\right)k^{2}}
Rozłóż na czynniki wyrażenie, dla którego jeszcze tego nie zrobiono.
\frac{-1}{k+3}
Skróć wartość 15k^{2} w liczniku i mianowniku.
\frac{\left(15k^{3}+45k^{2}\right)\frac{\mathrm{d}}{\mathrm{d}k}(-15k^{2})-\left(-15k^{2}\frac{\mathrm{d}}{\mathrm{d}k}(15k^{3}+45k^{2})\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Dla dowolnych dwóch różniczkowalnych funkcji pochodna ilorazu dwóch funkcji to mianownik pomnożony przez pochodną licznika minus licznik pomnożony przez pochodną mianownika, wszystko podzielone przez kwadrat mianownika.
\frac{\left(15k^{3}+45k^{2}\right)\times 2\left(-15\right)k^{2-1}-\left(-15k^{2}\left(3\times 15k^{3-1}+2\times 45k^{2-1}\right)\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Pochodna wielomianu jest sumą pochodnych jego czynników. Pochodna dowolnego czynnika stałego wynosi 0. Pochodna czynnika ax^{n} wynosi nax^{n-1}.
\frac{\left(15k^{3}+45k^{2}\right)\left(-30\right)k^{1}-\left(-15k^{2}\left(45k^{2}+90k^{1}\right)\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Uprość.
\frac{15k^{3}\left(-30\right)k^{1}+45k^{2}\left(-30\right)k^{1}-\left(-15k^{2}\left(45k^{2}+90k^{1}\right)\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Pomnóż 15k^{3}+45k^{2} przez -30k^{1}.
\frac{15k^{3}\left(-30\right)k^{1}+45k^{2}\left(-30\right)k^{1}-\left(-15k^{2}\times 45k^{2}-15k^{2}\times 90k^{1}\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Pomnóż -15k^{2} przez 45k^{2}+90k^{1}.
\frac{15\left(-30\right)k^{3+1}+45\left(-30\right)k^{2+1}-\left(-15\times 45k^{2+2}-15\times 90k^{2+1}\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Aby pomnożyć potęgi o tej samej podstawie, dodaj ich wykładniki.
\frac{-450k^{4}-1350k^{3}-\left(-675k^{4}-1350k^{3}\right)}{\left(15k^{3}+45k^{2}\right)^{2}}
Uprość.
\frac{225k^{4}-9k^{2}}{\left(15k^{3}+45k^{2}\right)^{2}}
Połącz podobne czynniki.