Przejdź do głównej zawartości
Oblicz
Tick mark Image
Rozwiń
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Użyj właściwości rozdzielności, aby pomnożyć x+3 przez x+4 i połączyć podobne czynniki.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Rozważ \left(x+1\right)\left(x-1\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Podnieś do kwadratu 1.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Użyj właściwości rozdzielności, aby pomnożyć x^{2} przez 1+x.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
Użyj właściwości rozdzielności, aby pomnożyć 3 przez x+3.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
Pomnóż \frac{x^{2}+7x+12}{x^{2}-1} przez \frac{x^{2}+x^{3}}{x+4}, mnożąc oba liczniki i oba mianowniki.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
Pomnóż \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)} przez \frac{x-1}{3x+9}, mnożąc oba liczniki i oba mianowniki.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
Rozłóż na czynniki wyrażenie, dla którego jeszcze tego nie zrobiono.
\frac{x^{2}}{3}
Skróć wartość \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right) w liczniku i mianowniku.
\frac{x^{2}+7x+12}{\left(x+1\right)\left(x-1\right)}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Użyj właściwości rozdzielności, aby pomnożyć x+3 przez x+4 i połączyć podobne czynniki.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}\left(1+x\right)}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Rozważ \left(x+1\right)\left(x-1\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Podnieś do kwadratu 1.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3\left(x+3\right)}
Użyj właściwości rozdzielności, aby pomnożyć x^{2} przez 1+x.
\frac{x^{2}+7x+12}{x^{2}-1}\times \frac{x^{2}+x^{3}}{x+4}\times \frac{x-1}{3x+9}
Użyj właściwości rozdzielności, aby pomnożyć 3 przez x+3.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)}\times \frac{x-1}{3x+9}
Pomnóż \frac{x^{2}+7x+12}{x^{2}-1} przez \frac{x^{2}+x^{3}}{x+4}, mnożąc oba liczniki i oba mianowniki.
\frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)\left(x-1\right)}{\left(x^{2}-1\right)\left(x+4\right)\left(3x+9\right)}
Pomnóż \frac{\left(x^{2}+7x+12\right)\left(x^{2}+x^{3}\right)}{\left(x^{2}-1\right)\left(x+4\right)} przez \frac{x-1}{3x+9}, mnożąc oba liczniki i oba mianowniki.
\frac{\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)x^{2}}{3\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right)}
Rozłóż na czynniki wyrażenie, dla którego jeszcze tego nie zrobiono.
\frac{x^{2}}{3}
Skróć wartość \left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+4\right) w liczniku i mianowniku.