Przejdź do głównej zawartości
Oblicz
Tick mark Image
Rozłóż na czynniki
Tick mark Image

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\frac{\sqrt{4}}{3}-\frac{2}{3}\times \left(\frac{2}{7}\right)^{3}\left(\frac{5^{2}}{6}\times \frac{2^{2}}{5}-1\right)-\frac{1}{6}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 1, aby uzyskać 3.
\frac{2}{3}-\frac{2}{3}\times \left(\frac{2}{7}\right)^{3}\left(\frac{5^{2}}{6}\times \frac{2^{2}}{5}-1\right)-\frac{1}{6}
Oblicz pierwiastek kwadratowy wartości 4, aby uzyskać 2.
\frac{2}{3}-\frac{2}{3}\times \frac{8}{343}\left(\frac{5^{2}}{6}\times \frac{2^{2}}{5}-1\right)-\frac{1}{6}
Podnieś \frac{2}{7} do potęgi 3, aby uzyskać \frac{8}{343}.
\frac{2}{3}-\frac{2\times 8}{3\times 343}\left(\frac{5^{2}}{6}\times \frac{2^{2}}{5}-1\right)-\frac{1}{6}
Pomnóż \frac{2}{3} przez \frac{8}{343}, mnożąc oba liczniki i oba mianowniki.
\frac{2}{3}-\frac{16}{1029}\left(\frac{5^{2}}{6}\times \frac{2^{2}}{5}-1\right)-\frac{1}{6}
Wykonaj operacje mnożenia w ułamku \frac{2\times 8}{3\times 343}.
\frac{2}{3}-\frac{16}{1029}\left(\frac{25}{6}\times \frac{2^{2}}{5}-1\right)-\frac{1}{6}
Podnieś 5 do potęgi 2, aby uzyskać 25.
\frac{2}{3}-\frac{16}{1029}\left(\frac{25}{6}\times \frac{4}{5}-1\right)-\frac{1}{6}
Podnieś 2 do potęgi 2, aby uzyskać 4.
\frac{2}{3}-\frac{16}{1029}\left(\frac{25\times 4}{6\times 5}-1\right)-\frac{1}{6}
Pomnóż \frac{25}{6} przez \frac{4}{5}, mnożąc oba liczniki i oba mianowniki.
\frac{2}{3}-\frac{16}{1029}\left(\frac{100}{30}-1\right)-\frac{1}{6}
Wykonaj operacje mnożenia w ułamku \frac{25\times 4}{6\times 5}.
\frac{2}{3}-\frac{16}{1029}\left(\frac{10}{3}-1\right)-\frac{1}{6}
Zredukuj ułamek \frac{100}{30} do najmniejszych czynników przez odejmowanie i skracanie ułamka 10.
\frac{2}{3}-\frac{16}{1029}\left(\frac{10}{3}-\frac{3}{3}\right)-\frac{1}{6}
Przekonwertuj liczbę 1 na ułamek \frac{3}{3}.
\frac{2}{3}-\frac{16}{1029}\times \frac{10-3}{3}-\frac{1}{6}
Ponieważ \frac{10}{3} i \frac{3}{3} mają ten sam mianownik, Odejmij je przez odjęcie ich liczników.
\frac{2}{3}-\frac{16}{1029}\times \frac{7}{3}-\frac{1}{6}
Odejmij 3 od 10, aby uzyskać 7.
\frac{2}{3}-\frac{16\times 7}{1029\times 3}-\frac{1}{6}
Pomnóż \frac{16}{1029} przez \frac{7}{3}, mnożąc oba liczniki i oba mianowniki.
\frac{2}{3}-\frac{112}{3087}-\frac{1}{6}
Wykonaj operacje mnożenia w ułamku \frac{16\times 7}{1029\times 3}.
\frac{2}{3}-\frac{16}{441}-\frac{1}{6}
Zredukuj ułamek \frac{112}{3087} do najmniejszych czynników przez odejmowanie i skracanie ułamka 7.
\frac{294}{441}-\frac{16}{441}-\frac{1}{6}
Najmniejsza wspólna wielokrotność wartości 3 i 441 to 441. Przekonwertuj wartości \frac{2}{3} i \frac{16}{441} na ułamki z mianownikiem 441.
\frac{294-16}{441}-\frac{1}{6}
Ponieważ \frac{294}{441} i \frac{16}{441} mają ten sam mianownik, Odejmij je przez odjęcie ich liczników.
\frac{278}{441}-\frac{1}{6}
Odejmij 16 od 294, aby uzyskać 278.
\frac{556}{882}-\frac{147}{882}
Najmniejsza wspólna wielokrotność wartości 441 i 6 to 882. Przekonwertuj wartości \frac{278}{441} i \frac{1}{6} na ułamki z mianownikiem 882.
\frac{556-147}{882}
Ponieważ \frac{556}{882} i \frac{147}{882} mają ten sam mianownik, Odejmij je przez odjęcie ich liczników.
\frac{409}{882}
Odejmij 147 od 556, aby uzyskać 409.