Oblicz
\frac{1}{h^{2}}
Różniczkuj względem h
-\frac{2}{h^{3}}
Udostępnij
Skopiowano do schowka
\frac{1}{hh}
Pokaż wartość \frac{\frac{1}{h}}{h} jako pojedynczy ułamek.
\frac{1}{h^{2}}
Pomnóż h przez h, aby uzyskać h^{2}.
\frac{1}{h}\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{h})+\frac{1}{h}\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{h})
Dla dowolnych dwóch różniczkowalnych funkcji pochodna iloczynu dwóch funkcji to pierwsza funkcja pomnożona przez pochodną drugiej funkcji plus druga funkcja pomnożona przez pochodną pierwszej funkcji.
\frac{1}{h}\left(-1\right)h^{-1-1}+\frac{1}{h}\left(-1\right)h^{-1-1}
Pochodna wielomianu jest sumą pochodnych jego czynników. Pochodna dowolnego czynnika stałego wynosi 0. Pochodna czynnika ax^{n} wynosi nax^{n-1}.
\frac{1}{h}\left(-1\right)h^{-2}+\frac{1}{h}\left(-1\right)h^{-2}
Uprość.
-h^{-1-2}-h^{-1-2}
Aby pomnożyć potęgi o tej samej podstawie, dodaj ich wykładniki.
-h^{-3}-h^{-3}
Uprość.
\left(-1-1\right)h^{-3}
Połącz podobne czynniki.
-2h^{-3}
Dodaj -1 do -1.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{1}h^{-1-1})
Aby podzielić potęgi o jednakowej podstawie, odejmij wykładnik mianownika od wykładnika licznika.
\frac{\mathrm{d}}{\mathrm{d}h}(h^{-2})
Wykonaj operacje arytmetyczne.
-2h^{-2-1}
Pochodna wielomianu jest sumą pochodnych jego czynników. Pochodna dowolnego czynnika stałego wynosi 0. Pochodna czynnika ax^{n} wynosi nax^{n-1}.
-2h^{-3}
Wykonaj operacje arytmetyczne.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}