Różniczkuj względem θ
-\frac{1}{\left(\sin(\theta )\right)^{2}}
Oblicz
\cot(\theta )
Wykres
Udostępnij
Skopiowano do schowka
\frac{\mathrm{d}}{\mathrm{d}\theta }(\frac{\cos(\theta )}{\sin(\theta )})
Użyj definicji cotangensa.
\frac{\sin(\theta )\frac{\mathrm{d}}{\mathrm{d}\theta }(\cos(\theta ))-\cos(\theta )\frac{\mathrm{d}}{\mathrm{d}\theta }(\sin(\theta ))}{\left(\sin(\theta )\right)^{2}}
Dla dowolnych dwóch różniczkowalnych funkcji pochodna ilorazu dwóch funkcji to mianownik pomnożony przez pochodną licznika minus licznik pomnożony przez pochodną mianownika, wszystko podzielone przez kwadrat mianownika.
\frac{\sin(\theta )\left(-\sin(\theta )\right)-\cos(\theta )\cos(\theta )}{\left(\sin(\theta )\right)^{2}}
Pochodna funkcji sin(\theta ) wynosi cos(\theta ), a pochodna funkcji cos(\theta ) wynosi −sin(\theta ).
-\frac{\left(\sin(\theta )\right)^{2}+\left(\cos(\theta )\right)^{2}}{\left(\sin(\theta )\right)^{2}}
Uprość.
-\frac{1}{\left(\sin(\theta )\right)^{2}}
Użyj tożsamości pitagorejskiej.
-\left(\csc(\theta )\right)^{2}
Użyj definicji cosecansa.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}