Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

a+b=-12 ab=1\times 36=36
Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako x^{2}+ax+bx+36. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b jest wartością ujemną, a i b są ujemne. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Oblicz sumę dla każdej pary.
a=-6 b=-6
Rozwiązanie to para, która daje sumę -12.
\left(x^{2}-6x\right)+\left(-6x+36\right)
Przepisz x^{2}-12x+36 jako \left(x^{2}-6x\right)+\left(-6x+36\right).
x\left(x-6\right)-6\left(x-6\right)
x w pierwszej i -6 w drugiej grupie.
\left(x-6\right)\left(x-6\right)
Wyłącz przed nawias wspólny czynnik x-6, używając właściwości rozdzielności.
\left(x-6\right)^{2}
Przepisz jako kwadrat dwumianu.
factor(x^{2}-12x+36)
Ten trójmian ma postać kwadratu trójmianu, być może pomnożonego przez wspólny czynnik. Kwadraty trójmianów można faktoryzować, znajdując pierwiastki kwadratowe początkowych i końcowych czynników.
\sqrt{36}=6
Znajdź pierwiastek kwadratowy końcowego czynnika 36.
\left(x-6\right)^{2}
Kwadrat trójmianu to kwadrat dwumianu, który jest sumą lub różnicą pierwiastków kwadratowych początkowego i końcowego czynnika, ze znakiem określonym przez znak środkowego czynnika kwadratu trójmianu.
x^{2}-12x+36=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 36}}{2}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 36}}{2}
Podnieś do kwadratu -12.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2}
Pomnóż -4 przez 36.
x=\frac{-\left(-12\right)±\sqrt{0}}{2}
Dodaj 144 do -144.
x=\frac{-\left(-12\right)±0}{2}
Oblicz pierwiastek kwadratowy wartości 0.
x=\frac{12±0}{2}
Liczba przeciwna do -12 to 12.
x^{2}-12x+36=\left(x-6\right)\left(x-6\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość 6 za x_{1}, a wartość 6 za x_{2}.