Przejdź do głównej zawartości
Oblicz
Tick mark Image
Różniczkuj względem x
Tick mark Image

Udostępnij

\frac{\left(\sqrt{x^{2}+y^{2}}-y\right)\left(\sqrt{x^{2}+y^{2}}+y\right)}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
Podziel \frac{\sqrt{x^{2}+y^{2}}-y}{x-\sqrt{x^{2}-y^{2}}} przez \frac{\sqrt{x^{2}-y^{2}}+x}{\sqrt{x^{2}+y^{2}}+y}, mnożąc \frac{\sqrt{x^{2}+y^{2}}-y}{x-\sqrt{x^{2}-y^{2}}} przez odwrotność \frac{\sqrt{x^{2}-y^{2}}+x}{\sqrt{x^{2}+y^{2}}+y}.
\frac{\left(\sqrt{x^{2}+y^{2}}\right)^{2}-y^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
Rozważ \left(\sqrt{x^{2}+y^{2}}-y\right)\left(\sqrt{x^{2}+y^{2}}+y\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}+y^{2}-y^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
Podnieś \sqrt{x^{2}+y^{2}} do potęgi 2, aby uzyskać x^{2}+y^{2}.
\frac{x^{2}}{\left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right)}
Połącz y^{2} i -y^{2}, aby uzyskać 0.
\frac{x^{2}}{x^{2}-\left(\sqrt{x^{2}-y^{2}}\right)^{2}}
Rozważ \left(x-\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}+x\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}}{x^{2}-\left(x^{2}-y^{2}\right)}
Podnieś \sqrt{x^{2}-y^{2}} do potęgi 2, aby uzyskać x^{2}-y^{2}.
\frac{x^{2}}{x^{2}-x^{2}+y^{2}}
Aby znaleźć wartość przeciwną do x^{2}-y^{2}, znajdź wartość przeciwną każdego czynnika.
\frac{x^{2}}{y^{2}}
Połącz x^{2} i -x^{2}, aby uzyskać 0.