Langkau ke kandungan utama
Microsoft
|
Math Solver
Selesaikan
Latihan
Bermain
Topik
Pra-algebra
Min
Mod
Faktor Sepunya Terbesar
Gandaan Sepunya Terkecil
Aturan Operasi
Pecahan
Pecahan Campuran
Pemfaktoran Perdana
Eksponen
Radikal
Algebra
Gabungkan Istilah Serupa
Selesaikan untuk mendapat pemboleh ubah
Faktor
Kembangkan
Menilai Pecahan
Persamaan Linear
Persamaan Kuadratik
Ketaksamaan
Sistem Persamaan
Matriks
Trigonometri
Permudahkan
Menilai
Graf
Selesaikan Persamaan
Kalkulus
Derivatif
Kamiran
Had
Input Algebra
Input Trigonometri
Input Kalkulus
Input Matriks
Selesaikan
Latihan
Bermain
Topik
Pra-algebra
Min
Mod
Faktor Sepunya Terbesar
Gandaan Sepunya Terkecil
Aturan Operasi
Pecahan
Pecahan Campuran
Pemfaktoran Perdana
Eksponen
Radikal
Algebra
Gabungkan Istilah Serupa
Selesaikan untuk mendapat pemboleh ubah
Faktor
Kembangkan
Menilai Pecahan
Persamaan Linear
Persamaan Kuadratik
Ketaksamaan
Sistem Persamaan
Matriks
Trigonometri
Permudahkan
Menilai
Graf
Selesaikan Persamaan
Kalkulus
Derivatif
Kamiran
Had
Input Algebra
Input Trigonometri
Input Kalkulus
Input Matriks
Asas
algebra
trigonometri
kalkulus
statistik
matriks
Aksara
Selesaikan untuk x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Graf
Graf Kedua-dua Belah dalam 2D
Graf dalam 2D
Kuiz
Trigonometry
\sin ( x ) = \cos ( x )
Masalah Sama dari Carian Web
How to solve equations like 2 \sin(x) = \cos(x)
https://math.stackexchange.com/questions/1476944/how-to-solve-equations-like-2-sinx-cosx/1476973
One way can be using tan\frac x2=t so sin x=\frac{2t}{1+t^2} and cos x=\frac{1-t^2}{1+t^2}. Here 2sin x= cos x implies t^2+4t-1=0 from wich tan \frac x2=2\pm\sqrt{5}.Hence the answer of ...
How do you show that the equation \displaystyle{1}-{\sin{{x}}}={\cos{{x}}} is not an identity?
https://socratic.org/questions/how-do-you-show-that-the-equation-1-sinx-cosx-is-not-an-identity
Bdub Nov 12, 2016 Pick a value for x like \displaystyle\frac{\pi}{{3}} and plug it in to both side to show that they don't equal each other and therefore not an identity
How do you solve \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}} ?
https://socratic.org/questions/how-do-you-solve-1-sin-x-cos-x
\displaystyle{x}={0} Explanation: \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}}{\quad\text{or}\quad}{\cos{{x}}}-{\sin{{x}}}={1} . Squaring both sides we get \displaystyle{\left({\cos{{x}}}-{\sin{{x}}}\right)}^{{2}}={1}{\quad\text{or}\quad}{{\cos}^{{2}}{x}}+{{\sin}^{{2}}{x}}-{2}{\sin{{x}}}{\cos{{x}}}={1}{\quad\text{or}\quad}{1}-{\sin{{2}}}{x}={1}{\quad\text{or}\quad}{\sin{{2}}}{x}={0}={\sin{{0}}}; ...
Trigonometric equation \sin2x=\cos x
https://math.stackexchange.com/questions/3008492/trigonometric-equation-sin2x-cos-x
As @Nicholas Stull hinted, you lost solutions by not making sure that you were not dividing by zero. As @Winther pointed out, you can avoid this error by factoring. As @Nicholas Stull pointed out, ...
Is there a deeper understanding of the derivative of sin(x) = cos(x)?
https://math.stackexchange.com/q/2454114
Apropos "deeper way": 1) f(x) = f(-x), even fct. Examples: y=x^2, y=cos(x) f'(x) = -f'(-x), chain rule, odd fct. 2) f(x)=-f(-x), odd fct. Examples: y=x^3, y=sin(x). f'(x) = f'(-x), ...
Maximum area of a rectangle inscribed in the cos(x) function
https://math.stackexchange.com/q/2212333
Equations like x= \cos x or x=\cot x generally don't have algebraic solutions. As such, we would first want to note that such an x exists (e.g., by the Intermediate Value Theorem) and then use ...
Lagi Item
Kongsi
Salin
Disalin ke papan klip
Masalah yang serupa
\tan ( x )
\sec ( x )
\sin ( x ) = \cos ( x )
\cot ( x )
\cos ( x )
\csc ( x )
Kembali ke atas