Langkau ke kandungan utama
Faktor
Tick mark Image
Nilaikan
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

a+b=-8 ab=1\times 16=16
Faktorkan ungkapan mengikut perkumpulan. Pertama sekali, ungkapan perlu ditulis semula sebagai x^{2}+ax+bx+16. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
-1,-16 -2,-8 -4,-4
Oleh kerana ab adalah positif, a dan b mempunyai tanda yang sama. Oleh kerana a+b adalah negatif, a dan b kedua-duanya negatif. Senaraikan semua pasangan integer yang memberikan hasil 16.
-1-16=-17 -2-8=-10 -4-4=-8
Kira jumlah untuk setiap pasangan.
a=-4 b=-4
Penyelesaian ialah pasangan yang memberikan jumlah -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Tulis semula x^{2}-8x+16 sebagai \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
Faktorkan x dalam kumpulan pertama dan -4 dalam kumpulan kedua.
\left(x-4\right)\left(x-4\right)
Faktorkan sebutan lazim x-4 dengan menggunakan sifat kalis agihan.
\left(x-4\right)^{2}
Tuliskan semula sebagai kuasa dua binomial.
factor(x^{2}-8x+16)
Trinomial ini mempunyai bentuk kuasa dua trinomial, mungkin didarabkan dengan faktor sepunya. Kuasa dua trinomial boleh difaktorkan dengan mencari punca kuasa dua sebutan pendahulu dan sebutan pengekor.
\sqrt{16}=4
Cari punca kuasa dua sebutan pengekor, 16.
\left(x-4\right)^{2}
Kuasa dua trinomial ialah kuasa dua binomial iaitu hasil tambah atau beza punca kuasa dua sebutan pendahulu dan pengekor dengan tanda yang ditentukan oleh tanda sebutan tengah kuasa dua trinomial.
x^{2}-8x+16=0
Polinomial kuadratik boleh difaktorkan dengan menggunakan transformasi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), apabila x_{1} dan x_{2} merupakan penyelesaian persamaan kuadratik ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Kuasa dua -8.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Darabkan -4 kali 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
Tambahkan 64 pada -64.
x=\frac{-\left(-8\right)±0}{2}
Ambil punca kuasa dua 0.
x=\frac{8±0}{2}
Nombor bertentangan -8 ialah 8.
x^{2}-8x+16=\left(x-4\right)\left(x-4\right)
Faktorkan ungkapan asal menggunakan ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Gantikan 4 dengan x_{1} dan 4 dengan x_{2}.