x എന്നതിനായി സോൾവ് ചെയ്യുക
x=-4
x=7
ഗ്രാഫ്
പങ്കിടുക
ക്ലിപ്പ്ബോർഡിലേക്ക് പകർത്തി
x^{2}-3x-28=0
ഇരുവശങ്ങളിൽ നിന്നും 28 കുറയ്ക്കുക.
a+b=-3 ab=-28
സമവാക്യം സോൾവ് ചെയ്യാൻ, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) എന്ന സൂത്രവാക്യം ഉപയോഗിച്ച് x^{2}-3x-28 ഫാക്ടർ ചെയ്യുക. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-28 2,-14 4,-7
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -28 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-28=-27 2-14=-12 4-7=-3
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-7 b=4
സൊല്യൂഷൻ എന്നത് -3 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x-7\right)\left(x+4\right)
ലഭ്യമാക്കിയ മൂല്യങ്ങൾ ഉപയോഗിച്ച് ഫാക്ടർ ചെയ്ത \left(x+a\right)\left(x+b\right) എന്ന ഗണനപ്രയോഗം പുനരാലേഖനം ചെയ്യുക.
x=7 x=-4
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-7=0, x+4=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}-3x-28=0
ഇരുവശങ്ങളിൽ നിന്നും 28 കുറയ്ക്കുക.
a+b=-3 ab=1\left(-28\right)=-28
സമവാക്യം സോൾവ് ചെയ്യാൻ, ഗ്രൂപ്പുചെയ്യുന്നതിലൂടെ ഇടതുഭാഗം ഫാക്ടർ ചെയ്യുക. ആദ്യം, ഇടതുഭാഗം x^{2}+ax+bx-28 എന്നായി പുനരാലേഖനം ചെയ്യേണ്ടതുണ്ട്. a, b എന്നിവ കണ്ടെത്താൻ, ഒരു സിസ്റ്റം സോൾവ് ചെയ്യേണ്ടതുണ്ട്.
1,-28 2,-14 4,-7
ab നെഗറ്റീവ് ആയതിനാൽ a, b എന്നിവയ്ക്ക് വിപരീത ചിഹ്നമുണ്ടായിരിക്കും. a+b നെഗറ്റീവ് ആയതിനാൽ, നെഗറ്റീവ് സംഖ്യയ്ക്ക് പോസിറ്റീവിനേക്കാൾ ഉയർന്ന കേവലമൂല്യമുണ്ടായിരിക്കും. -28 എന്ന ഗുണനഫലം നൽകുന്ന അത്തരം പൂർണ്ണസാംഖ്യാ ജോടികളെല്ലാം ലിസ്റ്റുചെയ്യുക.
1-28=-27 2-14=-12 4-7=-3
ഓരോ ജോടിക്കുമുള്ള ആകെത്തുക കണക്കാക്കുക.
a=-7 b=4
സൊല്യൂഷൻ എന്നത് -3 എന്ന ആകെത്തുക നൽകുന്ന ജോടിയാണ്.
\left(x^{2}-7x\right)+\left(4x-28\right)
x^{2}-3x-28 എന്നത് \left(x^{2}-7x\right)+\left(4x-28\right) എന്നായി തിരുത്തിയെഴുതുക.
x\left(x-7\right)+4\left(x-7\right)
ആദ്യ ഗ്രൂപ്പിലെ x എന്നതും രണ്ടാമത്തേതിലെ 4 എന്നതും ഘടക ലഘൂകരണം ചെയ്യുക.
\left(x-7\right)\left(x+4\right)
ഡിസ്ട്രിബ്യൂട്ടീവ് ഗുണവിശേഷത ഉപയോഗിച്ച് x-7 എന്ന പൊതുപദം ഘടക ലഘൂകരണം ചെയ്യുക.
x=7 x=-4
സമവാക്യ സൊല്യൂഷനുകൾ കണ്ടെത്താൻ x-7=0, x+4=0 എന്നിവ സോൾവ് ചെയ്യുക.
x^{2}-3x=28
ax^{2}+bx+c=0 എന്ന രൂപത്തിലുള്ള എല്ലാ സമവാക്യങ്ങളും ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം ഉപയോഗിച്ച് സോൾവ് ചെയ്യാനാകും: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ക്വാഡ്രാട്ടിക് സൂത്രവാക്യം രണ്ട് സൊല്യൂഷനുകൾ നൽകുന്നു, ഒന്ന് ± സങ്കലനമായിരിക്കുമ്പോഴും മറ്റൊന്ന് അത് വ്യവകലനമായിരിക്കുമ്പോഴും.
x^{2}-3x-28=28-28
സമചിഹ്നത്തിന്റെ ഇരുവശങ്ങളിൽ നിന്നും 28 കുറയ്ക്കുക.
x^{2}-3x-28=0
അതിൽ നിന്നുതന്നെ 28 കുറയ്ക്കുന്നത് 0 നൽകുന്നു.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-28\right)}}{2}
ഈ സമവാക്യം സാധാരണ രൂപത്തിലാണുള്ളത്: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} എന്ന ക്വാഡ്രാട്ടിക് സൂത്രവാക്യത്തിൽ a എന്നതിനായി 1 എന്നതും b എന്നതിനായി -3 എന്നതും c എന്നതിനായി -28 എന്നതും സബ്സ്റ്റിറ്റ്യൂട്ട് ചെയ്യുക.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-28\right)}}{2}
-3 സ്ക്വയർ ചെയ്യുക.
x=\frac{-\left(-3\right)±\sqrt{9+112}}{2}
-4, -28 എന്നിവ തമ്മിൽ ഗുണിക്കുക.
x=\frac{-\left(-3\right)±\sqrt{121}}{2}
9, 112 എന്നതിൽ ചേർക്കുക.
x=\frac{-\left(-3\right)±11}{2}
121 എന്നതിന്റെ വർഗ്ഗമൂലം എടുക്കുക.
x=\frac{3±11}{2}
-3 എന്നതിന്റെ വിപരീതം 3 ആണ്.
x=\frac{14}{2}
ഇപ്പോൾ ± എന്നത് അധിക ചിഹ്നമാകുമ്പോൾ, x=\frac{3±11}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3, 11 എന്നതിൽ ചേർക്കുക.
x=7
2 കൊണ്ട് 14 എന്നതിനെ ഹരിക്കുക.
x=-\frac{8}{2}
ഇപ്പോൾ ± എന്നത് വ്യവകലന ചിഹ്നമാകുമ്പോൾ, x=\frac{3±11}{2} എന്ന സമവാക്യം സോൾവ് ചെയ്യുക. 3 എന്നതിൽ നിന്ന് 11 വ്യവകലനം ചെയ്യുക.
x=-4
2 കൊണ്ട് -8 എന്നതിനെ ഹരിക്കുക.
x=7 x=-4
സമവാക്യം ഇപ്പോൾ സോൾവ് ചെയ്തു.
x^{2}-3x=28
ഇതുപോലുള്ള ക്വാഡ്രാട്ടിക് സമവാക്യങ്ങൾ സ്ക്വയർ പൂർത്തിയാക്കുന്നതിലൂടെ സോൾവ് ചെയ്യാനായേക്കാം. സ്ക്വയർ പൂർത്തിയാക്കാൻ, ആദ്യം സമവാക്യം x^{2}+bx=c എന്ന രൂപത്തിലായിരിക്കണം.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=28+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} നേടാൻ x എന്നതിന്റെ കോഎഫിഷ്യന്റ് പദമായ -3-നെ 2 കൊണ്ട് ഹരിക്കുക. തുടർന്ന്, സമവാക്യത്തിന്റെ ഇരുഭാഗത്തും -\frac{3}{2} എന്നതിന്റെ സ്ക്വയർ ചേർക്കുക. ഈ ഘട്ടം സമവാക്യത്തിന്റെ ഇടതുഭാഗത്തെ കുറ്റമറ്റ സ്ക്വയറാക്കി മാറ്റുന്നു.
x^{2}-3x+\frac{9}{4}=28+\frac{9}{4}
അംശത്തിന്റെ ന്യൂമറേറ്ററും ഭിന്നസംഖ്യാഛേദിയും സ്ക്വയർ ചെയ്യുന്നതിലൂടെ -\frac{3}{2} സ്ക്വയർ ചെയ്യുക.
x^{2}-3x+\frac{9}{4}=\frac{121}{4}
28, \frac{9}{4} എന്നതിൽ ചേർക്കുക.
\left(x-\frac{3}{2}\right)^{2}=\frac{121}{4}
x^{2}-3x+\frac{9}{4} ഘടകമാക്കുക. പൊതുവേ, x^{2}+bx+c ഒരു പെർഫക്റ്റ് സ്ക്വയറാണെങ്കില്, ഇത് എപ്പോഴും \left(x+\frac{b}{2}\right)^{2} എന്ന് ഘടകമാക്കാം.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളുടെയും വർഗ്ഗമൂലം എടുക്കുക.
x-\frac{3}{2}=\frac{11}{2} x-\frac{3}{2}=-\frac{11}{2}
ലഘൂകരിക്കുക.
x=7 x=-4
സമവാക്യത്തിന്റെ ഇരുവശങ്ങളിലും \frac{3}{2} ചേർക്കുക.