Prijeđi na glavni sadržaj
Microsoft
|
Math Solver
Riješiti
Praksa
Igrati
Teme
Predalgebra
Značiti
Način
Najveći zajednički faktor
Najmanji uobičajeni višekratnik
Redoslijed operacija
Razlomaka
Mješoviti razlomci
Primarna faktorizacija
Eksponente
Radikali
Algebra
Kombiniraj slične pojmove
Riješi za varijablu
Faktor
Proširiti
Procijeni razlomke
Linearne jednadžbe
Kvadratne jednadžbe
Nejednakosti
Sustavi jednadžbi
Matrice
Trigonometrija
Pojednostaviti
Procijeniti
Grafova
Rješavanje jednadžbi
Račun
Derivata
Integrali
Granice
Ulazi algebre
Ulazi trigonometrije
Ulazi računa
Ulazi matrice
Riješiti
Praksa
Igrati
Teme
Predalgebra
Značiti
Način
Najveći zajednički faktor
Najmanji uobičajeni višekratnik
Redoslijed operacija
Razlomaka
Mješoviti razlomci
Primarna faktorizacija
Eksponente
Radikali
Algebra
Kombiniraj slične pojmove
Riješi za varijablu
Faktor
Proširiti
Procijeni razlomke
Linearne jednadžbe
Kvadratne jednadžbe
Nejednakosti
Sustavi jednadžbi
Matrice
Trigonometrija
Pojednostaviti
Procijeniti
Grafova
Rješavanje jednadžbi
Račun
Derivata
Integrali
Granice
Ulazi algebre
Ulazi trigonometrije
Ulazi računa
Ulazi matrice
Osnovni
algebra
trigonometrija
račun
statistika
Matrice
Znakova
Izračunaj x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Grafikon
Iscrtaj obje strane u 2D-u
Iscrtaj u 2D-u
Kviz
Trigonometry
\sin ( x ) = \cos ( x )
Slični problemi iz pretraživanja weba
How to solve equations like 2 \sin(x) = \cos(x)
https://math.stackexchange.com/questions/1476944/how-to-solve-equations-like-2-sinx-cosx/1476973
One way can be using tan\frac x2=t so sin x=\frac{2t}{1+t^2} and cos x=\frac{1-t^2}{1+t^2}. Here 2sin x= cos x implies t^2+4t-1=0 from wich tan \frac x2=2\pm\sqrt{5}.Hence the answer of ...
How do you show that the equation \displaystyle{1}-{\sin{{x}}}={\cos{{x}}} is not an identity?
https://socratic.org/questions/how-do-you-show-that-the-equation-1-sinx-cosx-is-not-an-identity
Bdub Nov 12, 2016 Pick a value for x like \displaystyle\frac{\pi}{{3}} and plug it in to both side to show that they don't equal each other and therefore not an identity
How do you solve \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}} ?
https://socratic.org/questions/how-do-you-solve-1-sin-x-cos-x
\displaystyle{x}={0} Explanation: \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}}{\quad\text{or}\quad}{\cos{{x}}}-{\sin{{x}}}={1} . Squaring both sides we get \displaystyle{\left({\cos{{x}}}-{\sin{{x}}}\right)}^{{2}}={1}{\quad\text{or}\quad}{{\cos}^{{2}}{x}}+{{\sin}^{{2}}{x}}-{2}{\sin{{x}}}{\cos{{x}}}={1}{\quad\text{or}\quad}{1}-{\sin{{2}}}{x}={1}{\quad\text{or}\quad}{\sin{{2}}}{x}={0}={\sin{{0}}}; ...
Trigonometric equation \sin2x=\cos x
https://math.stackexchange.com/questions/3008492/trigonometric-equation-sin2x-cos-x
As @Nicholas Stull hinted, you lost solutions by not making sure that you were not dividing by zero. As @Winther pointed out, you can avoid this error by factoring. As @Nicholas Stull pointed out, ...
Is there a deeper understanding of the derivative of sin(x) = cos(x)?
https://math.stackexchange.com/q/2454114
Apropos "deeper way": 1) f(x) = f(-x), even fct. Examples: y=x^2, y=cos(x) f'(x) = -f'(-x), chain rule, odd fct. 2) f(x)=-f(-x), odd fct. Examples: y=x^3, y=sin(x). f'(x) = f'(-x), ...
Maximum area of a rectangle inscribed in the cos(x) function
https://math.stackexchange.com/q/2212333
Equations like x= \cos x or x=\cot x generally don't have algebraic solutions. As such, we would first want to note that such an x exists (e.g., by the Intermediate Value Theorem) and then use ...
Više Predmeta
Dijeliti
Kopija
Kopirano u međuspremnik
Slični problemi
\tan ( x )
\sec ( x )
\sin ( x ) = \cos ( x )
\cot ( x )
\cos ( x )
\csc ( x )
Povratak na vrh