a के लिए हल करें
a=\frac{bc}{3}
b\neq 0
b के लिए हल करें
\left\{\begin{matrix}b=\frac{3a}{c}\text{, }&a\neq 0\text{ and }c\neq 0\\b\neq 0\text{, }&c=0\text{ and }a=0\end{matrix}\right.
साझा करें
क्लिपबोर्ड में प्रतिलिपि बनाई गई
3a=cb
समीकरण के दोनों को b से गुणा करें.
3a=bc
समीकरण मानक रूप में है.
\frac{3a}{3}=\frac{bc}{3}
दोनों ओर 3 से विभाजन करें.
a=\frac{bc}{3}
3 से विभाजित करना 3 से गुणा करने को पूर्ववत् करता है.
3a=cb
चर b, 0 के बराबर नहीं हो सकता क्योंकि शून्य से विभाजन निर्धारित नहीं है. समीकरण के दोनों को b से गुणा करें.
cb=3a
किनारों पर स्वैप करें जिससे सभी चर पद बाएँ हाथ की ओर आ जाएँ.
\frac{cb}{c}=\frac{3a}{c}
दोनों ओर c से विभाजन करें.
b=\frac{3a}{c}
c से विभाजित करना c से गुणा करने को पूर्ववत् करता है.
b=\frac{3a}{c}\text{, }b\neq 0
चर b, 0 के बराबर नहीं हो सकता.