Aller au contenu principal
Calculer x
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

x^{2}-3x-28=0
Soustraire 28 des deux côtés.
a+b=-3 ab=-28
Pour résoudre l’équation, factorisez x^{2}-3x-28 à l’aide de la x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) de formule. Pour rechercher a et b, configurez un système à résoudre.
1,-28 2,-14 4,-7
Étant donné que ab est négatif, a et b ont des signes opposés. Étant donné que a+b est négatif, le nombre négatif a une valeur absolue supérieure à la valeur positive. Répertoriez toutes les paires de ce nombre entier qui donnent le produit -28.
1-28=-27 2-14=-12 4-7=-3
Calculez la somme de chaque paire.
a=-7 b=4
La solution est la paire qui donne la somme -3.
\left(x-7\right)\left(x+4\right)
Réécrivez l’expression factorisée \left(x+a\right)\left(x+b\right) à l’aide des valeurs obtenues.
x=7 x=-4
Pour rechercher des solutions d’équation, résolvez x-7=0 et x+4=0.
x^{2}-3x-28=0
Soustraire 28 des deux côtés.
a+b=-3 ab=1\left(-28\right)=-28
Pour résoudre l’équation, factorisez le côté gauche en regroupant la main. Le côté gauche doit être réécrit en tant que x^{2}+ax+bx-28. Pour rechercher a et b, configurez un système à résoudre.
1,-28 2,-14 4,-7
Étant donné que ab est négatif, a et b ont des signes opposés. Étant donné que a+b est négatif, le nombre négatif a une valeur absolue supérieure à la valeur positive. Répertoriez toutes les paires de ce nombre entier qui donnent le produit -28.
1-28=-27 2-14=-12 4-7=-3
Calculez la somme de chaque paire.
a=-7 b=4
La solution est la paire qui donne la somme -3.
\left(x^{2}-7x\right)+\left(4x-28\right)
Réécrire x^{2}-3x-28 en tant qu’\left(x^{2}-7x\right)+\left(4x-28\right).
x\left(x-7\right)+4\left(x-7\right)
Factorisez x du premier et 4 dans le deuxième groupe.
\left(x-7\right)\left(x+4\right)
Factoriser le facteur commun x-7 en utilisant la distributivité.
x=7 x=-4
Pour rechercher des solutions d’équation, résolvez x-7=0 et x+4=0.
x^{2}-3x=28
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
x^{2}-3x-28=28-28
Soustraire 28 des deux côtés de l’équation.
x^{2}-3x-28=0
La soustraction de 28 de lui-même donne 0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-28\right)}}{2}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez 1 à a, -3 à b et -28 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-28\right)}}{2}
Calculer le carré de -3.
x=\frac{-\left(-3\right)±\sqrt{9+112}}{2}
Multiplier -4 par -28.
x=\frac{-\left(-3\right)±\sqrt{121}}{2}
Additionner 9 et 112.
x=\frac{-\left(-3\right)±11}{2}
Extraire la racine carrée de 121.
x=\frac{3±11}{2}
L’inverse de -3 est 3.
x=\frac{14}{2}
Résolvez maintenant l’équation x=\frac{3±11}{2} lorsque ± est positif. Additionner 3 et 11.
x=7
Diviser 14 par 2.
x=-\frac{8}{2}
Résolvez maintenant l’équation x=\frac{3±11}{2} lorsque ± est négatif. Soustraire 11 à 3.
x=-4
Diviser -8 par 2.
x=7 x=-4
L’équation est désormais résolue.
x^{2}-3x=28
Les équations quadratiques de ce type peuvent être résolues en calculant le carré. Pour ce faire, l’équation doit d’abord utiliser le format x^{2}+bx=c.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=28+\left(-\frac{3}{2}\right)^{2}
DiVisez -3, le coefficient de la x terme, par 2 d'obtenir -\frac{3}{2}. Ajouter ensuite le carré de -\frac{3}{2} aux deux côtés de l'équation. Cette étape permet de faire du côté gauche de l'équation un carré parfait.
x^{2}-3x+\frac{9}{4}=28+\frac{9}{4}
Calculer le carré de -\frac{3}{2} en élévant au carré le numérateur et le dénominateur de la fraction.
x^{2}-3x+\frac{9}{4}=\frac{121}{4}
Additionner 28 et \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{121}{4}
Factoriser x^{2}-3x+\frac{9}{4}. En général, lorsque x^{2}+bx+c est un carré parfait, il peut toujours être factorisé sous la forme \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Extraire la racine carrée des deux côtés de l’équation.
x-\frac{3}{2}=\frac{11}{2} x-\frac{3}{2}=-\frac{11}{2}
Simplifier.
x=7 x=-4
Ajouter \frac{3}{2} aux deux côtés de l’équation.