x-ৰ বাবে সমাধান কৰক
x=5
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
a+b=-10 ab=25
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}-10x+25ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-25 -5,-5
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 25 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-25=-26 -5-5=-10
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-5 b=-5
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -10।
\left(x-5\right)\left(x-5\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
\left(x-5\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
x=5
সমীকৰণ উলিয়াবলৈ, x-5=0 সমাধান কৰক।
a+b=-10 ab=1\times 25=25
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx+25 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-25 -5,-5
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 25 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-25=-26 -5-5=-10
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-5 b=-5
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -10।
\left(x^{2}-5x\right)+\left(-5x+25\right)
x^{2}-10x+25ক \left(x^{2}-5x\right)+\left(-5x+25\right) হিচাপে পুনৰ লিখক।
x\left(x-5\right)-5\left(x-5\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত -5ৰ গুণনীয়ক উলিয়াওক।
\left(x-5\right)\left(x-5\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-5ৰ গুণনীয়ক উলিয়াওক।
\left(x-5\right)^{2}
এটা বান'মিয়েল স্কুৱেৰ পুনঃলিখক৷
x=5
সমীকৰণ উলিয়াবলৈ, x-5=0 সমাধান কৰক।
x^{2}-10x+25=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
সমীকৰণটো এটা মান্য ৰূপত থাকে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰত a-ৰ বাবে 1, b-ৰ বাবে -10, c-ৰ বাবে 25 চাবষ্টিটিউট কৰক, \frac{-b±\sqrt{b^{2}-4ac}}{2a} আৰু ইয়াক ± প্লাচ হ’লে সমাধান কৰক৷
x=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
বৰ্গ -10৷
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
-4 বাৰ 25 পুৰণ কৰক৷
x=\frac{-\left(-10\right)±\sqrt{0}}{2}
-100 লৈ 100 যোগ কৰক৷
x=-\frac{-10}{2}
0-ৰ বৰ্গমূল লওক৷
x=\frac{10}{2}
-10ৰ বিপৰীত হৈছে 10৷
x=5
2-ৰ দ্বাৰা 10 হৰণ কৰক৷
x^{2}-10x+25=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
\left(x-5\right)^{2}=0
ফেক্টৰ x^{2}-10x+25৷ সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা সুনিৰ্দিষ্ট বৰ্গ হয়, ই সদায়ে \left(x+\frac{b}{2}\right)^{2} ৰূপে ফেক্টৰ হয়৷
\sqrt{\left(x-5\right)^{2}}=\sqrt{0}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-5=0 x-5=0
সৰলীকৰণ৷
x=5 x=5
সমীকৰণৰ দুয়োটা দিশতে 5 যোগ কৰক৷
x=5
সমীকৰণটো এতিয়া সমাধান হৈছে৷ সমাধান একে হৈছে৷