Ana içeriğe geç
Microsoft
|
Math Solver
Çözüm
Pratik
Oynamak
Başlıklar
Ön Cebir
Ortalama
Mod
En Büyük Ortak Faktör
En küçük ortak Kat
İşlemler Sırası
Kesirler
Karışık Kesirler
Asal Çarpanlara Ayırma
Katsayılar
Kökler
Cebir
Benzer Terimleri Birleştir
Bir Değişken için Çöz
Çarpan
Genişlet
Kesirleri Değerlendirin
Doğrusal Denklemler
Kuadratik Denklemler
Eşitsizlikler
Denklem Sistemleri
Matrisler
Trigonometri
Sadeleştir
Değerlendir
Grafikler
Denklemleri Çöz
Hesaplama
Türevler
İntegraller
Limitler
Cebir Girişleri
Trigonometri Girişleri
Matematik Girdileri
Matris Girişleri
Çözüm
Pratik
Oynamak
Başlıklar
Ön Cebir
Ortalama
Mod
En Büyük Ortak Faktör
En küçük ortak Kat
İşlemler Sırası
Kesirler
Karışık Kesirler
Asal Çarpanlara Ayırma
Katsayılar
Kökler
Cebir
Benzer Terimleri Birleştir
Bir Değişken için Çöz
Çarpan
Genişlet
Kesirleri Değerlendirin
Doğrusal Denklemler
Kuadratik Denklemler
Eşitsizlikler
Denklem Sistemleri
Matrisler
Trigonometri
Sadeleştir
Değerlendir
Grafikler
Denklemleri Çöz
Hesaplama
Türevler
İntegraller
Limitler
Cebir Girişleri
Trigonometri Girişleri
Matematik Girdileri
Matris Girişleri
Temel
Cebir
Trigonometri
hesap
İstatistikler
Matrisler
Karakter
x için çözün
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Grafik
Her İki Tarafı 2B Çiz
2B Çiz
Test
Trigonometry
\sin ( x ) = \cos ( x )
Web Aramasından Benzer Problemler
How to solve equations like 2 \sin(x) = \cos(x)
https://math.stackexchange.com/questions/1476944/how-to-solve-equations-like-2-sinx-cosx/1476973
One way can be using tan\frac x2=t so sin x=\frac{2t}{1+t^2} and cos x=\frac{1-t^2}{1+t^2}. Here 2sin x= cos x implies t^2+4t-1=0 from wich tan \frac x2=2\pm\sqrt{5}.Hence the answer of ...
How do you show that the equation \displaystyle{1}-{\sin{{x}}}={\cos{{x}}} is not an identity?
https://socratic.org/questions/how-do-you-show-that-the-equation-1-sinx-cosx-is-not-an-identity
Bdub Nov 12, 2016 Pick a value for x like \displaystyle\frac{\pi}{{3}} and plug it in to both side to show that they don't equal each other and therefore not an identity
How do you solve \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}} ?
https://socratic.org/questions/how-do-you-solve-1-sin-x-cos-x
\displaystyle{x}={0} Explanation: \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}}{\quad\text{or}\quad}{\cos{{x}}}-{\sin{{x}}}={1} . Squaring both sides we get \displaystyle{\left({\cos{{x}}}-{\sin{{x}}}\right)}^{{2}}={1}{\quad\text{or}\quad}{{\cos}^{{2}}{x}}+{{\sin}^{{2}}{x}}-{2}{\sin{{x}}}{\cos{{x}}}={1}{\quad\text{or}\quad}{1}-{\sin{{2}}}{x}={1}{\quad\text{or}\quad}{\sin{{2}}}{x}={0}={\sin{{0}}}; ...
Trigonometric equation \sin2x=\cos x
https://math.stackexchange.com/questions/3008492/trigonometric-equation-sin2x-cos-x
As @Nicholas Stull hinted, you lost solutions by not making sure that you were not dividing by zero. As @Winther pointed out, you can avoid this error by factoring. As @Nicholas Stull pointed out, ...
Is there a deeper understanding of the derivative of sin(x) = cos(x)?
https://math.stackexchange.com/q/2454114
Apropos "deeper way": 1) f(x) = f(-x), even fct. Examples: y=x^2, y=cos(x) f'(x) = -f'(-x), chain rule, odd fct. 2) f(x)=-f(-x), odd fct. Examples: y=x^3, y=sin(x). f'(x) = f'(-x), ...
Maximum area of a rectangle inscribed in the cos(x) function
https://math.stackexchange.com/q/2212333
Equations like x= \cos x or x=\cot x generally don't have algebraic solutions. As such, we would first want to note that such an x exists (e.g., by the Intermediate Value Theorem) and then use ...
Öğeler tane daha
Paylaş
Kopyala
Panoya kopyalandı
Benzer Sorunlar
\tan ( x )
\sec ( x )
\sin ( x ) = \cos ( x )
\cot ( x )
\cos ( x )
\csc ( x )
Başa dön