Çarpanlara Ayır
\left(x-6\right)\left(x+2\right)
Hesapla
\left(x-6\right)\left(x+2\right)
Grafik
Paylaş
Panoya kopyalandı
a+b=-4 ab=1\left(-12\right)=-12
İfadeyi gruplandırarak çarpanlarına ayırın. Öncelikle ifadenin x^{2}+ax+bx-12 olarak yeniden yazılması gerekir. a ve b bulmak için, bir sistemi çözülebilecek şekilde ayarlayın.
1,-12 2,-6 3,-4
ab negatif olduğundan a ve b ters işaretlere sahip. a+b negatif olduğundan, negatif sayı sıfırdan büyük bir mutlak değer içeriyor. Çarpımı -12 olan tam sayı çiftlerini listeleyin.
1-12=-11 2-6=-4 3-4=-1
Her çiftin toplamını hesaplayın.
a=-6 b=2
Çözüm, -4 toplamını veren çifttir.
\left(x^{2}-6x\right)+\left(2x-12\right)
x^{2}-4x-12 ifadesini \left(x^{2}-6x\right)+\left(2x-12\right) olarak yeniden yazın.
x\left(x-6\right)+2\left(x-6\right)
İlk grubu x, ikinci grubu 2 ortak çarpan parantezine alın.
\left(x-6\right)\left(x+2\right)
Dağılma özelliği kullanarak x-6 ortak terimi parantezine alın.
x^{2}-4x-12=0
İkinci dereceden polinomsal ifadeler ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) dönüşümü kullanılarak çarpanlarına ayrılabilir. Burada x_{1} ve x_{2} ikinci dereceden ax^{2}+bx+c=0 denkleminin çözümleridir.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
ax^{2}+bx+c=0 biçimindeki tüm denklemler, karesel formül kullanılarak çözülebilir: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Karesel formül, biri ± toplama diğeri de çıkarma olduğunda size iki çözüm sunar.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
-4 sayısının karesi.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
-4 ile -12 sayısını çarpın.
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
48 ile 16 sayısını toplayın.
x=\frac{-\left(-4\right)±8}{2}
64 sayısının karekökünü alın.
x=\frac{4±8}{2}
-4 sayısının tersi: 4.
x=\frac{12}{2}
Şimdi, ± değerinin pozitif olduğunu varsayarak x=\frac{4±8}{2} denklemini çözün. 8 ile 4 sayısını toplayın.
x=6
12 sayısını 2 ile bölün.
x=-\frac{4}{2}
Şimdi, ± değerinin negatif olduğunu varsayarak x=\frac{4±8}{2} denklemini çözün. 8 sayısını 4 sayısından çıkarın.
x=-2
-4 sayısını 2 ile bölün.
x^{2}-4x-12=\left(x-6\right)\left(x-\left(-2\right)\right)
Özgün ifadeyi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) kullanarak çarpanlarına ayırın. 6 yerine x_{1}, -2 yerine ise x_{2} koyun.
x^{2}-4x-12=\left(x-6\right)\left(x+2\right)
p-\left(-q\right) biçimindeki tüm ifadeleri p+q biçiminde olacak şekilde sadeleştirin.