Hoppa till huvudinnehåll
Microsoft
|
Math Solver
Lösa
Praktik
Leka
Ämnen
Före Algebra
Betyda
Läge
Största gemensamma faktorn
Minst vanliga flera
Verksamhetsordning
Fraktioner
Blandade fraktioner
Främsta factorization
Exponenter
Radikaler
Algebra
Kombinera som termer
Lös för en variabel
Faktor
Expandera
Utvärdera bråktal
Linjära ekvationer
Kvadratiska ekvationer
Ojämlikhet
System av ekvationer
Matriser
Trigonometri
Förenkla
Evaluera
Grafer
Lös ekvationer
Kalkyl
Derivat
Integraler
Gränser
Ingångar för algebra
Trigonometriska ingångar
Ingångar för analys
Matris ingångar
Lösa
Praktik
Leka
Ämnen
Före Algebra
Betyda
Läge
Största gemensamma faktorn
Minst vanliga flera
Verksamhetsordning
Fraktioner
Blandade fraktioner
Främsta factorization
Exponenter
Radikaler
Algebra
Kombinera som termer
Lös för en variabel
Faktor
Expandera
Utvärdera bråktal
Linjära ekvationer
Kvadratiska ekvationer
Ojämlikhet
System av ekvationer
Matriser
Trigonometri
Förenkla
Evaluera
Grafer
Lös ekvationer
Kalkyl
Derivat
Integraler
Gränser
Ingångar för algebra
Trigonometriska ingångar
Ingångar för analys
Matris ingångar
Grundläggande
algebra
trigonometri
kalkyl
statistik
Matriser
Tecken
Beräkna
0
Derivera m.a.p. x
0
Frågesport
Differentiation
\frac { d } { d x } ( 2 )
Liknande problem från webbsökning
let f be a differentiable function. Compute \frac{d}{dx}g(2), where g(x) = \frac{f(2x)}{x}.
https://math.stackexchange.com/questions/2351494/let-f-be-a-differentiable-function-compute-fracddxg2-where-gx
You have an extra 4 in the numerator here: i know that : \dfrac{d}{dx}g(2)=\dfrac{4(\dfrac{d}{dx}f(4))-4f(4)}{4} If g(x) = \dfrac{f(2x)}x, then \begin{align*} \frac d{dx} g(x) &= \frac d{dx} ...
How to rewrite \frac{d}{d(x+c)}? [closed]
https://math.stackexchange.com/questions/1376627/how-to-rewrite-fracddxc
Use the chain rule. Define u = x + c then use the fact that \frac{d\cdot}{dx} = \frac{du}{dx} \frac{d\cdot}{du} where the \cdot represents any function, so \frac{df}{dx} = \frac{du}{dx} \frac{df}{du} ...
What does is the meaning of \frac{d}{dx}+x in (\frac{d}{dx}+x)y=0?
https://math.stackexchange.com/q/1590756
The symbols d/dx and x should both be interpreted as linear operators acting on a vector space that the unknown function y belongs to. The sum of linear operators is well-defined and that is ...
Intuitive explanation of \frac{\mathrm{d}}{\mathrm{d}x}=0?
https://math.stackexchange.com/questions/2894024/intuitive-explanation-of-frac-mathrmd-mathrmdx-0
Not sure about the problem but the strength of the electrical field, E, depends on your distance from it, which I assume is x. \frac{dE}{dx} then, is how much the strength of the field changes ...
Question about the chain rule.
https://math.stackexchange.com/q/2940216
Suppose we add an infinitesimal to x : x_1=x_0+\Delta x . What happens to y ? By definition, the derivative tells us how much a function changes relative to changes in its input: the change ...
Spectrum of the derivative operator
https://math.stackexchange.com/questions/2117107/spectrum-of-the-derivative-operator
\newcommand{\id}{I} As it was mentioned in the comments, the domain where you defined the operator is not correct - If you take C^1-functions with derivatives in L^2 the domain will be "too ...
Fler Objekt
Aktie
Kopia
Kopieras till Urklipp
Liknande problem
\frac { d } { d x } ( 2 )
\frac { d } { d x } ( 4 x )
\frac { d } { d x } ( 6 x ^ 2 )
\frac { d } { d x } ( 3x+7 )
\frac { d } { d a } ( 6a ( a -2) )
\frac { d } { d z } ( \frac{z+3}{2z-4} )
Tillbaka till toppen