Preskoči na glavno vsebino
Microsoft
|
Math Solver
Rešiti
Praksa
Igrati
Teme
Pred algebro
Pomeniti
Naèin
Največji skupni dejavnik
Najmanjši skupni večkratnik
Razpored operacij
Frakcije
Mešane frakcije
Primarna faktorizacija
Eksponenti
Radikali
Algebra
Združite podobne izraze
Rešite spremenljivko
Dejavnik
Razširiti
Ovrednotenje ulomkov
Linearne enačbe
Kvadratne enačbe
Neenakosti
Sistemi enačb
Matrike
Trigonometrija
Poenostaviti
Oceni
Grafi
Reševanje enačb
Računa
Derivati
Integrali
Omejitve
Vhodi algebre
Vhodi za trigonometrijo
Vnosi računa
Matrični vhodi
Rešiti
Praksa
Igrati
Teme
Pred algebro
Pomeniti
Naèin
Največji skupni dejavnik
Najmanjši skupni večkratnik
Razpored operacij
Frakcije
Mešane frakcije
Primarna faktorizacija
Eksponenti
Radikali
Algebra
Združite podobne izraze
Rešite spremenljivko
Dejavnik
Razširiti
Ovrednotenje ulomkov
Linearne enačbe
Kvadratne enačbe
Neenakosti
Sistemi enačb
Matrike
Trigonometrija
Poenostaviti
Oceni
Grafi
Reševanje enačb
Računa
Derivati
Integrali
Omejitve
Vhodi algebre
Vhodi za trigonometrijo
Vnosi računa
Matrični vhodi
Osnoven
algebra
Trigonometrija
Računa
statistika
Matrike
Znakov
Ovrednoti
0
Kviz
Limits
\lim_{ x \rightarrow 0 } 5x
Podobne težave pri spletnem iskanju
Prove that for any c \neq 0 \lim_{x \rightarrow c}{h(x)} does not exist and that \lim_{x \rightarrow 0}{h(x)} does exist.
https://math.stackexchange.com/questions/334631/prove-that-for-any-c-neq-0-lim-x-rightarrow-chx-does-not-exist-and
Hint: take one sequence that contains only rationals and another one that contains only irrationals (both tending to c\ne 0). For the case of c=0, you can use e.g. that h is continuous at 0 ...
Proofs regarding Continuous functions 1
https://math.stackexchange.com/questions/526691/proofs-regarding-continuous-functions-1
The proof of part a) needs to be modified a bit. You have used the logic that if N \leq f(x) \leq M then xN \leq xf(x) \leq xM. This holds only when x \geq 0. It is better to change the argument ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Calculate: \lim_{x \to 0 } = x \cdot \sin(\frac{1}{x})
https://math.stackexchange.com/questions/1066434/calculate-lim-x-to-0-x-cdot-sin-frac1x
Your proof is incorrect, cause you used incorrect transform, but it has already been stated. I'll describe way to solve it. \lim_{x \to 0}\frac{\sin(\frac{1}{x})}{\frac{1}{x}} \neq 1 Hint : ...
Prove that f(x) is bounded. Please check my proof.
https://math.stackexchange.com/q/1052420
Here is another approach: Let L_0 = \lim_{x \downarrow 0} f(x), L_\infty = \lim_{x \to \infty} f(x). By definition of the limit we have some \delta>0 and N>0 such that if x \in (0, \delta), ...
Complex Function limit by investigating sequences
https://math.stackexchange.com/questions/1915934/complex-function-limit-by-investigating-sequences
If a limit as z \to 0 exists, one should be able to plug in any sequence \{ z_n \} going to zero and get the same limit. Limits of sequences are generally easier to work with. So in this case if ...
Več Elemente
Delež
Kopirati
Kopirano v odložišče
Podobne težave
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Nazaj na vrh