Preskoči na glavno vsebino
Microsoft
|
Math Solver
Rešiti
Praksa
Igrati
Teme
Pred algebro
Pomeniti
Naèin
Največji skupni dejavnik
Najmanjši skupni večkratnik
Razpored operacij
Frakcije
Mešane frakcije
Primarna faktorizacija
Eksponenti
Radikali
Algebra
Združite podobne izraze
Rešite spremenljivko
Dejavnik
Razširiti
Ovrednotenje ulomkov
Linearne enačbe
Kvadratne enačbe
Neenakosti
Sistemi enačb
Matrike
Trigonometrija
Poenostaviti
Oceni
Grafi
Reševanje enačb
Računa
Derivati
Integrali
Omejitve
Vhodi algebre
Vhodi za trigonometrijo
Vnosi računa
Matrični vhodi
Rešiti
Praksa
Igrati
Teme
Pred algebro
Pomeniti
Naèin
Največji skupni dejavnik
Najmanjši skupni večkratnik
Razpored operacij
Frakcije
Mešane frakcije
Primarna faktorizacija
Eksponenti
Radikali
Algebra
Združite podobne izraze
Rešite spremenljivko
Dejavnik
Razširiti
Ovrednotenje ulomkov
Linearne enačbe
Kvadratne enačbe
Neenakosti
Sistemi enačb
Matrike
Trigonometrija
Poenostaviti
Oceni
Grafi
Reševanje enačb
Računa
Derivati
Integrali
Omejitve
Vhodi algebre
Vhodi za trigonometrijo
Vnosi računa
Matrični vhodi
Osnoven
algebra
Trigonometrija
Računa
statistika
Matrike
Znakov
Ovrednoti
\text{Divergent}
Kviz
Limits
\lim_{ x \rightarrow 0 } \frac{2}{x}
Podobne težave pri spletnem iskanju
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
Več Elemente
Delež
Kopirati
Kopirano v odložišče
Podobne težave
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Nazaj na vrh