Preskoči na glavno vsebino
Microsoft
|
Math Solver
Rešiti
Praksa
Igrati
Teme
Pred algebro
Pomeniti
Naèin
Največji skupni dejavnik
Najmanjši skupni večkratnik
Razpored operacij
Frakcije
Mešane frakcije
Primarna faktorizacija
Eksponenti
Radikali
Algebra
Združite podobne izraze
Rešite spremenljivko
Dejavnik
Razširiti
Ovrednotenje ulomkov
Linearne enačbe
Kvadratne enačbe
Neenakosti
Sistemi enačb
Matrike
Trigonometrija
Poenostaviti
Oceni
Grafi
Reševanje enačb
Računa
Derivati
Integrali
Omejitve
Vhodi algebre
Vhodi za trigonometrijo
Vnosi računa
Matrični vhodi
Rešiti
Praksa
Igrati
Teme
Pred algebro
Pomeniti
Naèin
Največji skupni dejavnik
Najmanjši skupni večkratnik
Razpored operacij
Frakcije
Mešane frakcije
Primarna faktorizacija
Eksponenti
Radikali
Algebra
Združite podobne izraze
Rešite spremenljivko
Dejavnik
Razširiti
Ovrednotenje ulomkov
Linearne enačbe
Kvadratne enačbe
Neenakosti
Sistemi enačb
Matrike
Trigonometrija
Poenostaviti
Oceni
Grafi
Reševanje enačb
Računa
Derivati
Integrali
Omejitve
Vhodi algebre
Vhodi za trigonometrijo
Vnosi računa
Matrični vhodi
Osnoven
algebra
Trigonometrija
Računa
statistika
Matrike
Znakov
Ovrednoti
5
Kviz
Limits
\lim_{ x \rightarrow 0 } 5
Podobne težave pri spletnem iskanju
Is \lim_{x\to 0} (x) different from dx
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Več Elemente
Delež
Kopirati
Kopirano v odložišče
Podobne težave
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Nazaj na vrh