Перейти к основному содержанию
Microsoft
|
Math Solver
Решить
Упражнения
Играть
Задачи
Предалгебраические задачи
Среднее значение
Мода
Наибольший общий делитель
Наименьшее общее кратное
Порядок выполнения действий
Дроби
Смешанные дроби
Разложение на простые множители
Экспоненты
Радикалы
Алгебра
Группировать подобные члены
Найти переменную
Множитель
Разложить
Вычисления с дробями
Линейные уравнения
Квадратные уравнения
Неравенства
Системы уравнений
Матрицы
Тригонометрия
Сократить уравнение
Найти численное значение
Графики
Решить уравнения
Математический анализ
Производные
Интегралы
Пределы функций
Входные данные по алгебре
Тригонометрические входы
Входные данные для исчисления
Матричные входы
Решить
Упражнения
Играть
Задачи
Предалгебраические задачи
Среднее значение
Мода
Наибольший общий делитель
Наименьшее общее кратное
Порядок выполнения действий
Дроби
Смешанные дроби
Разложение на простые множители
Экспоненты
Радикалы
Алгебра
Группировать подобные члены
Найти переменную
Множитель
Разложить
Вычисления с дробями
Линейные уравнения
Квадратные уравнения
Неравенства
Системы уравнений
Матрицы
Тригонометрия
Сократить уравнение
Найти численное значение
Графики
Решить уравнения
Математический анализ
Производные
Интегралы
Пределы функций
Входные данные по алгебре
Тригонометрические входы
Входные данные для исчисления
Матричные входы
Основные
алгебра
тригонометрия
математический анализ
статистика
матрицы
Письмена
Вычислить
\infty
Викторина
Limits
5 задач, подобных этой:
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Подобные задачи из результатов поиска в Интернете
Showing that the \lim_{x\to 0}\frac{1}{x^2} does not exist
https://math.stackexchange.com/q/1579837
Suppose that the limit exists and equals c\in\mathbb{R}. Then for e.g. \epsilon>1 some \delta>0 must exist with \left|x\right|<\delta\implies\left|\frac{1}{x^{2}}-c\right|<1. However, if we ...
Applying L'Hopital's rule to \lim\limits_{x \to 0}\frac{2}{x^2}
https://math.stackexchange.com/questions/502024/applying-lhopitals-rule-to-lim-limits-x-to-0-frac2x2
In order to use the 0/0 case of L'Hospital's rule, we require that both the numerator and the denominator tend to 0 at the appropriate point. The numerator does not tend to 0.
Is this piece-wise function continuous, and why?
https://math.stackexchange.com/questions/2411697/is-this-piece-wise-function-continuous-and-why
If we look at the behaviour as x approaches zero from the right, the function looks like this: \begin{matrix}x & f(x) = \frac{1}{x^2} \\ 1 & 1 \\ 0.1 & 100 \\ 0.01 & 10000 \\ 0.001 & 1000000 \\ 0.0001 & 100000000\end{matrix} ...
Manipulating \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}}
https://math.stackexchange.com/questions/2177214/manipulating-lim-limits-x-to-0-frac-sqrtx-sqrtxxn
If \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}} = c for some c\neq 0, then \lim\limits_{x \to 0}{\frac{x+\sqrt{x}}{x^{2n}}} =c^2. Now, let \sqrt{x}=t. We then wish to find n such ...
Limit of \frac{f'(x)}{g'(x)} & g'(x) \neq 0 in Hypotheses of L'Hospital's rule.
https://math.stackexchange.com/q/110408
When we write things like \lim_{x\to a}h(x) = \lim_{x\to a}H(x) we usually mean "if either limit exists, then they both do and they are equal; if either limit does not exist, then neither limit ...
How do we calculate the Right and Left Hand Limit of 1/x?
https://math.stackexchange.com/questions/762599/how-do-we-calculate-the-right-and-left-hand-limit-of-1-x
\mathbf{Definition} : \boxed{ \lim_{x \to a^+ } f(x) = \infty } means that for all \alpha > 0, there exists \delta > 0 such that if 0<x -a < \delta, then f(x) > \alpha \mathbf{Example} ...
Еще элементов
Поделиться
Копировать
Скопировано в буфер обмена
Похожие задачи
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
К началу