Перейти к основному содержанию
Microsoft
|
Math Solver
Решить
Упражнения
Играть
Задачи
Предалгебраические задачи
Среднее значение
Мода
Наибольший общий делитель
Наименьшее общее кратное
Порядок выполнения действий
Дроби
Смешанные дроби
Разложение на простые множители
Экспоненты
Радикалы
Алгебра
Группировать подобные члены
Найти переменную
Множитель
Разложить
Вычисления с дробями
Линейные уравнения
Квадратные уравнения
Неравенства
Системы уравнений
Матрицы
Тригонометрия
Сократить уравнение
Найти численное значение
Графики
Решить уравнения
Математический анализ
Производные
Интегралы
Пределы функций
Входные данные по алгебре
Тригонометрические входы
Входные данные для исчисления
Матричные входы
Решить
Упражнения
Играть
Задачи
Предалгебраические задачи
Среднее значение
Мода
Наибольший общий делитель
Наименьшее общее кратное
Порядок выполнения действий
Дроби
Смешанные дроби
Разложение на простые множители
Экспоненты
Радикалы
Алгебра
Группировать подобные члены
Найти переменную
Множитель
Разложить
Вычисления с дробями
Линейные уравнения
Квадратные уравнения
Неравенства
Системы уравнений
Матрицы
Тригонометрия
Сократить уравнение
Найти численное значение
Графики
Решить уравнения
Математический анализ
Производные
Интегралы
Пределы функций
Входные данные по алгебре
Тригонометрические входы
Входные данные для исчисления
Матричные входы
Основные
алгебра
тригонометрия
математический анализ
статистика
матрицы
Письмена
Вычислить
\text{Divergent}
Викторина
Limits
\lim_{ x \rightarrow 0 } \frac{2}{x}
Подобные задачи из результатов поиска в Интернете
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
Еще элементов
Поделиться
Копировать
Скопировано в буфер обмена
Похожие задачи
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
К началу