Direct la conținutul principal
Microsoft
|
Math Solver
Rezolvare
Exersați
Juca
Subiecte
Pre-Algebră
Înseamnă
Modul
Cel mai mare factor comun
Cel mai mic multiplu comun
Ordinea operațiunilor
Fracţii
Fracții mixte
Factorizare prim
Exponenţii
Radicali
Algebra
Combinare termeni asemănători
Rezolvare pentru o variabilă
Factor
Extindeți
Evaluare fracții
Ecuații liniare
Ecuații pătratice
Inegalităţilor
Sisteme de ecuații
Matrici
Trigonometrie
Simplifica
Evalua
Grafice
Rezolvare ecuații
Calcul
Derivate
Integrale
Limite
Intrări algebrice
Intrări trigonometrice
Intrări de calcul
Intrări matrice
Rezolvare
Exersați
Juca
Subiecte
Pre-Algebră
Înseamnă
Modul
Cel mai mare factor comun
Cel mai mic multiplu comun
Ordinea operațiunilor
Fracţii
Fracții mixte
Factorizare prim
Exponenţii
Radicali
Algebra
Combinare termeni asemănători
Rezolvare pentru o variabilă
Factor
Extindeți
Evaluare fracții
Ecuații liniare
Ecuații pătratice
Inegalităţilor
Sisteme de ecuații
Matrici
Trigonometrie
Simplifica
Evalua
Grafice
Rezolvare ecuații
Calcul
Derivate
Integrale
Limite
Intrări algebrice
Intrări trigonometrice
Intrări de calcul
Intrări matrice
Bază
algebra
Trigonometrie
Calcul
statistici
matrici
Caractere
Evaluați
5
Test
Limits
5 probleme similare cu aceasta:
\lim_{ x \rightarrow 0 } 5
Probleme similare din căutarea web
Is \lim_{x\to 0} (x) different from dx
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Mai multe Elemente
Partajați
Copiați
Copiat în clipboard
Probleme similare
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Revenire la început