Direct la conținutul principal
Microsoft
|
Math Solver
Rezolvare
Exersați
Juca
Subiecte
Pre-Algebră
Înseamnă
Modul
Cel mai mare factor comun
Cel mai mic multiplu comun
Ordinea operațiunilor
Fracţii
Fracții mixte
Factorizare prim
Exponenţii
Radicali
Algebra
Combinare termeni asemănători
Rezolvare pentru o variabilă
Factor
Extindeți
Evaluare fracții
Ecuații liniare
Ecuații pătratice
Inegalităţilor
Sisteme de ecuații
Matrici
Trigonometrie
Simplifica
Evalua
Grafice
Rezolvare ecuații
Calcul
Derivate
Integrale
Limite
Intrări algebrice
Intrări trigonometrice
Intrări de calcul
Intrări matrice
Rezolvare
Exersați
Juca
Subiecte
Pre-Algebră
Înseamnă
Modul
Cel mai mare factor comun
Cel mai mic multiplu comun
Ordinea operațiunilor
Fracţii
Fracții mixte
Factorizare prim
Exponenţii
Radicali
Algebra
Combinare termeni asemănători
Rezolvare pentru o variabilă
Factor
Extindeți
Evaluare fracții
Ecuații liniare
Ecuații pătratice
Inegalităţilor
Sisteme de ecuații
Matrici
Trigonometrie
Simplifica
Evalua
Grafice
Rezolvare ecuații
Calcul
Derivate
Integrale
Limite
Intrări algebrice
Intrări trigonometrice
Intrări de calcul
Intrări matrice
Bază
algebra
Trigonometrie
Calcul
statistici
matrici
Caractere
Evaluați
\text{Divergent}
Test
Limits
5 probleme similare cu aceasta:
\lim_{ x \rightarrow 0 } \frac{2}{x}
Probleme similare din căutarea web
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
Mai multe Elemente
Partajați
Copiați
Copiat în clipboard
Probleme similare
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Revenire la început