Direct la conținutul principal
Microsoft
|
Math Solver
Rezolvare
Exersați
Juca
Subiecte
Pre-Algebră
Înseamnă
Modul
Cel mai mare factor comun
Cel mai mic multiplu comun
Ordinea operațiunilor
Fracţii
Fracții mixte
Factorizare prim
Exponenţii
Radicali
Algebra
Combinare termeni asemănători
Rezolvare pentru o variabilă
Factor
Extindeți
Evaluare fracții
Ecuații liniare
Ecuații pătratice
Inegalităţilor
Sisteme de ecuații
Matrici
Trigonometrie
Simplifica
Evalua
Grafice
Rezolvare ecuații
Calcul
Derivate
Integrale
Limite
Intrări algebrice
Intrări trigonometrice
Intrări de calcul
Intrări matrice
Rezolvare
Exersați
Juca
Subiecte
Pre-Algebră
Înseamnă
Modul
Cel mai mare factor comun
Cel mai mic multiplu comun
Ordinea operațiunilor
Fracţii
Fracții mixte
Factorizare prim
Exponenţii
Radicali
Algebra
Combinare termeni asemănători
Rezolvare pentru o variabilă
Factor
Extindeți
Evaluare fracții
Ecuații liniare
Ecuații pătratice
Inegalităţilor
Sisteme de ecuații
Matrici
Trigonometrie
Simplifica
Evalua
Grafice
Rezolvare ecuații
Calcul
Derivate
Integrale
Limite
Intrări algebrice
Intrări trigonometrice
Intrări de calcul
Intrări matrice
Bază
algebra
Trigonometrie
Calcul
statistici
matrici
Caractere
Evaluați
\infty
Test
Limits
5 probleme similare cu aceasta:
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Probleme similare din căutarea web
Showing that the \lim_{x\to 0}\frac{1}{x^2} does not exist
https://math.stackexchange.com/q/1579837
Suppose that the limit exists and equals c\in\mathbb{R}. Then for e.g. \epsilon>1 some \delta>0 must exist with \left|x\right|<\delta\implies\left|\frac{1}{x^{2}}-c\right|<1. However, if we ...
Applying L'Hopital's rule to \lim\limits_{x \to 0}\frac{2}{x^2}
https://math.stackexchange.com/questions/502024/applying-lhopitals-rule-to-lim-limits-x-to-0-frac2x2
In order to use the 0/0 case of L'Hospital's rule, we require that both the numerator and the denominator tend to 0 at the appropriate point. The numerator does not tend to 0.
Is this piece-wise function continuous, and why?
https://math.stackexchange.com/questions/2411697/is-this-piece-wise-function-continuous-and-why
If we look at the behaviour as x approaches zero from the right, the function looks like this: \begin{matrix}x & f(x) = \frac{1}{x^2} \\ 1 & 1 \\ 0.1 & 100 \\ 0.01 & 10000 \\ 0.001 & 1000000 \\ 0.0001 & 100000000\end{matrix} ...
Manipulating \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}}
https://math.stackexchange.com/questions/2177214/manipulating-lim-limits-x-to-0-frac-sqrtx-sqrtxxn
If \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}} = c for some c\neq 0, then \lim\limits_{x \to 0}{\frac{x+\sqrt{x}}{x^{2n}}} =c^2. Now, let \sqrt{x}=t. We then wish to find n such ...
Limit of \frac{f'(x)}{g'(x)} & g'(x) \neq 0 in Hypotheses of L'Hospital's rule.
https://math.stackexchange.com/q/110408
When we write things like \lim_{x\to a}h(x) = \lim_{x\to a}H(x) we usually mean "if either limit exists, then they both do and they are equal; if either limit does not exist, then neither limit ...
How do we calculate the Right and Left Hand Limit of 1/x?
https://math.stackexchange.com/questions/762599/how-do-we-calculate-the-right-and-left-hand-limit-of-1-x
\mathbf{Definition} : \boxed{ \lim_{x \to a^+ } f(x) = \infty } means that for all \alpha > 0, there exists \delta > 0 such that if 0<x -a < \delta, then f(x) > \alpha \mathbf{Example} ...
Mai multe Elemente
Partajați
Copiați
Copiat în clipboard
Probleme similare
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Revenire la început