y d x + ( x - 1 ) d y = 0
Rezolvați pentru d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=\frac{1}{2}\text{ or }y=0\end{matrix}\right,
Rezolvați pentru x (complex solution)
\left\{\begin{matrix}\\x=\frac{1}{2}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\text{ or }y=0\end{matrix}\right,
Rezolvați pentru d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=\frac{1}{2}\text{ or }y=0\end{matrix}\right,
Rezolvați pentru x
\left\{\begin{matrix}\\x=\frac{1}{2}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&d=0\text{ or }y=0\end{matrix}\right,
Grafic
Partajați
Copiat în clipboard
ydx+\left(xd-d\right)y=0
Utilizați proprietatea de distributivitate pentru a înmulți x-1 cu d.
ydx+xdy-dy=0
Utilizați proprietatea de distributivitate pentru a înmulți xd-d cu y.
2ydx-dy=0
Combinați ydx cu xdy pentru a obține 2ydx.
\left(2yx-y\right)d=0
Combinați toți termenii care conțin d.
\left(2xy-y\right)d=0
Ecuația este în forma standard.
d=0
Împărțiți 0 la 2yx-y.
ydx+\left(xd-d\right)y=0
Utilizați proprietatea de distributivitate pentru a înmulți x-1 cu d.
ydx+xdy-dy=0
Utilizați proprietatea de distributivitate pentru a înmulți xd-d cu y.
2ydx-dy=0
Combinați ydx cu xdy pentru a obține 2ydx.
2ydx=dy
Adăugați dy la ambele părți. Orice număr plus zero este egal cu el însuși.
2dyx=dy
Ecuația este în forma standard.
\frac{2dyx}{2dy}=\frac{dy}{2dy}
Se împart ambele părți la 2yd.
x=\frac{dy}{2dy}
Împărțirea la 2yd anulează înmulțirea cu 2yd.
x=\frac{1}{2}
Împărțiți yd la 2yd.
ydx+\left(xd-d\right)y=0
Utilizați proprietatea de distributivitate pentru a înmulți x-1 cu d.
ydx+xdy-dy=0
Utilizați proprietatea de distributivitate pentru a înmulți xd-d cu y.
2ydx-dy=0
Combinați ydx cu xdy pentru a obține 2ydx.
\left(2yx-y\right)d=0
Combinați toți termenii care conțin d.
\left(2xy-y\right)d=0
Ecuația este în forma standard.
d=0
Împărțiți 0 la 2yx-y.
ydx+\left(xd-d\right)y=0
Utilizați proprietatea de distributivitate pentru a înmulți x-1 cu d.
ydx+xdy-dy=0
Utilizați proprietatea de distributivitate pentru a înmulți xd-d cu y.
2ydx-dy=0
Combinați ydx cu xdy pentru a obține 2ydx.
2ydx=dy
Adăugați dy la ambele părți. Orice număr plus zero este egal cu el însuși.
2dyx=dy
Ecuația este în forma standard.
\frac{2dyx}{2dy}=\frac{dy}{2dy}
Se împart ambele părți la 2yd.
x=\frac{dy}{2dy}
Împărțirea la 2yd anulează înmulțirea cu 2yd.
x=\frac{1}{2}
Împărțiți yd la 2yd.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}