Direct la conținutul principal
Descompunere în factori
Tick mark Image
Evaluați
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

a+b=5 ab=1\times 6=6
Descompuneți expresia în factori prin grupare. Mai întâi, expresia trebuie să fie rescrisă ca y^{2}+ay+by+6. Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
1,6 2,3
Deoarece ab este pozitiv, a și b au același semn. Deoarece a+b este pozitiv, a și b sunt ambele pozitive. Listează toate perechi de valori întregi care oferă produse 6.
1+6=7 2+3=5
Calculați suma pentru fiecare pereche.
a=2 b=3
Soluția este perechea care dă suma de 5.
\left(y^{2}+2y\right)+\left(3y+6\right)
Rescrieți y^{2}+5y+6 ca \left(y^{2}+2y\right)+\left(3y+6\right).
y\left(y+2\right)+3\left(y+2\right)
Factor y în primul și 3 în al doilea grup.
\left(y+2\right)\left(y+3\right)
Scoateți termenul comun y+2 prin utilizarea proprietății de distributivitate.
y^{2}+5y+6=0
Polinomul de gradul doi se poate descompune în factori folosind transformarea ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), unde x_{1} și x_{2} sunt soluțiile ecuației de gradul doi ax^{2}+bx+c=0.
y=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
y=\frac{-5±\sqrt{25-4\times 6}}{2}
Ridicați 5 la pătrat.
y=\frac{-5±\sqrt{25-24}}{2}
Înmulțiți -4 cu 6.
y=\frac{-5±\sqrt{1}}{2}
Adunați 25 cu -24.
y=\frac{-5±1}{2}
Aflați rădăcina pătrată pentru 1.
y=-\frac{4}{2}
Acum rezolvați ecuația y=\frac{-5±1}{2} atunci când ± este plus. Adunați -5 cu 1.
y=-2
Împărțiți -4 la 2.
y=-\frac{6}{2}
Acum rezolvați ecuația y=\frac{-5±1}{2} atunci când ± este minus. Scădeți 1 din -5.
y=-3
Împărțiți -6 la 2.
y^{2}+5y+6=\left(y-\left(-2\right)\right)\left(y-\left(-3\right)\right)
Descompuneți în factori expresia inițială utilizând ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Înlocuiți x_{1} cu -2 și x_{2} cu -3.
y^{2}+5y+6=\left(y+2\right)\left(y+3\right)
Simplificați toate expresiile formei p-\left(-q\right) la p+q.