Rezolvați pentru y (complex solution)
y=\ln(-\frac{\cos(2x)-1}{2\left(\cos(x)\right)^{2}})
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}
Rezolvați pentru x
x=\pi +\left(-1\right)ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})+2n_{43}\pi \text{, }n_{43}\in \mathrm{Z}\text{, }\exists n_{6}\in \mathrm{Z}\text{ : }\left(\pi +\left(-1\right)ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})+2n_{43}\pi >\frac{1}{2}\pi n_{6}\text{ and }\pi +\left(-1\right)ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})+2n_{43}\pi <\frac{1}{2}\pi \left(n_{6}+1\right)\right)\text{ and }\exists n_{6}\in \mathrm{Z}\text{ : }\left(\pi +\left(-1\right)ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})+2n_{43}\pi >\frac{1}{2}\pi n_{6}\text{ and }\pi +\left(-1\right)ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})+2n_{43}\pi <\frac{1}{2}\pi \left(n_{6}+1\right)\right)
x=2n_{36}\pi +\left(-1\right)\pi +ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})\text{, }n_{36}\in \mathrm{Z}\text{, }\exists n_{6}\in \mathrm{Z}\text{ : }\left(2n_{36}\pi +\left(-1\right)\pi +ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})>\frac{1}{2}\pi n_{6}\text{ and }2n_{36}\pi +\left(-1\right)\pi +ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})<\frac{1}{2}\pi \left(n_{6}+1\right)\right)\text{ and }\exists n_{6}\in \mathrm{Z}\text{ : }\left(2n_{36}\pi +\left(-1\right)\pi +ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})>\frac{1}{2}\pi n_{6}\text{ and }2n_{36}\pi +\left(-1\right)\pi +ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})<\frac{1}{2}\pi \left(n_{6}+1\right)\right)
x=ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})+2\pi n_{37}\text{, }n_{37}\in \mathrm{Z}\text{, }\exists n_{6}\in \mathrm{Z}\text{ : }\left(ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})+2\pi n_{37}>\frac{1}{2}\pi n_{6}\text{ and }ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})+2\pi n_{37}<\frac{1}{2}\pi \left(n_{6}+1\right)\right)\text{ and }\exists n_{6}\in \mathrm{Z}\text{ : }\left(ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})+2\pi n_{37}>\frac{1}{2}\pi n_{6}\text{ and }ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})+2\pi n_{37}<\frac{1}{2}\pi \left(n_{6}+1\right)\right)
x=\left(-1\right)\left(\left(-2\right)\pi n_{38}+ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})\right)\text{, }n_{38}\in \mathrm{Z}\text{, }\exists n_{6}\in \mathrm{Z}\text{ : }\left(\left(-1\right)\left(\left(-2\right)\pi n_{38}+ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})\right)>\frac{1}{2}\pi n_{6}\text{ and }\left(-1\right)\left(\left(-2\right)\pi n_{38}+ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})\right)<\frac{1}{2}\pi \left(n_{6}+1\right)\right)\text{ and }\exists n_{6}\in \mathrm{Z}\text{ : }\left(\left(-1\right)\left(\left(-2\right)\pi n_{38}+ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})\right)>\frac{1}{2}\pi n_{6}\text{ and }\left(-1\right)\left(\left(-2\right)\pi n_{38}+ArcCosI(\left(e^{y}+1\right)^{-\frac{1}{2}})\right)<\frac{1}{2}\pi \left(n_{6}+1\right)\right)
Rezolvați pentru y
y=\ln(\left(\tan(x)\right)^{2})
\exists n_{1}\in \mathrm{Z}\text{ : }\left(x>\frac{\pi n_{1}}{2}\text{ and }x<\frac{\pi n_{1}}{2}+\frac{\pi }{2}\right)
Grafic
Partajați
Copiat în clipboard
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}