Rezolvați pentru p
\left\{\begin{matrix}p=\frac{x^{2}}{2y}\text{, }&x\neq 0\text{ and }y\neq 0\\p\neq 0\text{, }&y=0\text{ and }x=0\end{matrix}\right,
Rezolvați pentru x (complex solution)
x=-\sqrt{y}\sqrt{2p}
x=\sqrt{y}\sqrt{2p}\text{, }p\neq 0
Rezolvați pentru x
x=\sqrt{2py}
x=-\sqrt{2py}\text{, }\left(y\geq 0\text{ and }p>0\right)\text{ or }\left(y\leq 0\text{ and }p<0\right)
Grafic
Partajați
Copiat în clipboard
y\times 2p=x^{2}
Variabila p nu poate fi egală cu 0, deoarece împărțirea la zero nu este definită. Înmulțiți ambele părți ale ecuației cu 2p.
2py=x^{2}
Reordonați termenii.
2yp=x^{2}
Ecuația este în forma standard.
\frac{2yp}{2y}=\frac{x^{2}}{2y}
Se împart ambele părți la 2y.
p=\frac{x^{2}}{2y}
Împărțirea la 2y anulează înmulțirea cu 2y.
p=\frac{x^{2}}{2y}\text{, }p\neq 0
Variabila p nu poate să fie egală cu 0.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}