Rezolvați pentru x
x=\frac{3y+5}{2\left(y+4\right)}
y\neq -4
Rezolvați pentru y
y=-\frac{5-8x}{3-2x}
x\neq \frac{3}{2}
Grafic
Partajați
Copiat în clipboard
y\left(-2x+3\right)=8x-5
Variabila x nu poate fi egală cu \frac{3}{2}, deoarece împărțirea la zero nu este definită. Înmulțiți ambele părți ale ecuației cu -2x+3.
-2yx+3y=8x-5
Utilizați proprietatea de distributivitate pentru a înmulți y cu -2x+3.
-2yx+3y-8x=-5
Scădeți 8x din ambele părți.
-2yx-8x=-5-3y
Scădeți 3y din ambele părți.
\left(-2y-8\right)x=-5-3y
Combinați toți termenii care conțin x.
\left(-2y-8\right)x=-3y-5
Ecuația este în forma standard.
\frac{\left(-2y-8\right)x}{-2y-8}=\frac{-3y-5}{-2y-8}
Se împart ambele părți la -2y-8.
x=\frac{-3y-5}{-2y-8}
Împărțirea la -2y-8 anulează înmulțirea cu -2y-8.
x=\frac{3y+5}{2\left(y+4\right)}
Împărțiți -5-3y la -2y-8.
x=\frac{3y+5}{2\left(y+4\right)}\text{, }x\neq \frac{3}{2}
Variabila x nu poate să fie egală cu \frac{3}{2}.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}