x d x = \quad d ( 2 x ^ { 2 } + 3 )
Rezolvați pentru d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=-\sqrt{3}i\text{ or }x=\sqrt{3}i\end{matrix}\right,
Rezolvați pentru d
d=0
Rezolvați pentru x (complex solution)
\left\{\begin{matrix}\\x=-\sqrt{3}i\text{; }x=\sqrt{3}i\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right,
Rezolvați pentru x
x\in \mathrm{R}
d=0
Grafic
Partajați
Copiat în clipboard
x^{2}d=d\left(2x^{2}+3\right)
Înmulțiți x cu x pentru a obține x^{2}.
x^{2}d=2dx^{2}+3d
Utilizați proprietatea de distributivitate pentru a înmulți d cu 2x^{2}+3.
x^{2}d-2dx^{2}=3d
Scădeți 2dx^{2} din ambele părți.
-x^{2}d=3d
Combinați x^{2}d cu -2dx^{2} pentru a obține -x^{2}d.
-x^{2}d-3d=0
Scădeți 3d din ambele părți.
\left(-x^{2}-3\right)d=0
Combinați toți termenii care conțin d.
d=0
Împărțiți 0 la -x^{2}-3.
x^{2}d=d\left(2x^{2}+3\right)
Înmulțiți x cu x pentru a obține x^{2}.
x^{2}d=2dx^{2}+3d
Utilizați proprietatea de distributivitate pentru a înmulți d cu 2x^{2}+3.
x^{2}d-2dx^{2}=3d
Scădeți 2dx^{2} din ambele părți.
-x^{2}d=3d
Combinați x^{2}d cu -2dx^{2} pentru a obține -x^{2}d.
-x^{2}d-3d=0
Scădeți 3d din ambele părți.
\left(-x^{2}-3\right)d=0
Combinați toți termenii care conțin d.
d=0
Împărțiți 0 la -x^{2}-3.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}