Evaluați
\frac{1}{x+8}
Calculați derivata în funcție de x
-\frac{1}{\left(x+8\right)^{2}}
Grafic
Partajați
Copiat în clipboard
\frac{x}{x\left(x+8\right)}
Descompuneți în factori expresiile care nu sunt descompuse deja.
\frac{1}{x+8}
Reduceți prin eliminare x atât în numărător, cât și în numitor.
\frac{\left(x^{2}+8x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})-x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+8x^{1})}{\left(x^{2}+8x^{1}\right)^{2}}
Pentru orice două funcții diferențiabile, derivata câtului celor două funcții este numitorul înmulțit cu derivata numărătorului, minus numărătorul înmulțit cu derivata numitorului, totul împărțit la numitorul la pătrat.
\frac{\left(x^{2}+8x^{1}\right)x^{1-1}-x^{1}\left(2x^{2-1}+8x^{1-1}\right)}{\left(x^{2}+8x^{1}\right)^{2}}
Derivata unui polinom este suma derivatelor termenilor săi. Derivata unui termen constant este 0. Derivata lui ax^{n} este nax^{n-1}.
\frac{\left(x^{2}+8x^{1}\right)x^{0}-x^{1}\left(2x^{1}+8x^{0}\right)}{\left(x^{2}+8x^{1}\right)^{2}}
Simplificați.
\frac{x^{2}x^{0}+8x^{1}x^{0}-x^{1}\left(2x^{1}+8x^{0}\right)}{\left(x^{2}+8x^{1}\right)^{2}}
Înmulțiți x^{2}+8x^{1} cu x^{0}.
\frac{x^{2}x^{0}+8x^{1}x^{0}-\left(x^{1}\times 2x^{1}+x^{1}\times 8x^{0}\right)}{\left(x^{2}+8x^{1}\right)^{2}}
Înmulțiți x^{1} cu 2x^{1}+8x^{0}.
\frac{x^{2}+8x^{1}-\left(2x^{1+1}+8x^{1}\right)}{\left(x^{2}+8x^{1}\right)^{2}}
Pentru a înmulți puterile cu aceleași baze, adunați exponenții lor.
\frac{x^{2}+8x^{1}-\left(2x^{2}+8x^{1}\right)}{\left(x^{2}+8x^{1}\right)^{2}}
Simplificați.
\frac{-x^{2}}{\left(x^{2}+8x^{1}\right)^{2}}
Combinați termenii asemenea.
\frac{-x^{2}}{\left(x^{2}+8x\right)^{2}}
Pentru orice termen t, t^{1}=t.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}