Descompunere în factori
\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x^{2}-3x+9\right)
Evaluați
x^{5}-x^{3}+27x^{2}-27
Grafic
Partajați
Copiat în clipboard
x^{3}\left(x^{2}-1\right)+27\left(x^{2}-1\right)
Faceți gruparea x^{5}-x^{3}+27x^{2}-27=\left(x^{5}-x^{3}\right)+\left(27x^{2}-27\right) și factorul x^{3} în primul și 27 în al doilea grup.
\left(x^{2}-1\right)\left(x^{3}+27\right)
Scoateți termenul comun x^{2}-1 prin utilizarea proprietății de distributivitate.
\left(x-1\right)\left(x+1\right)
Să luăm x^{2}-1. Rescrieți x^{2}-1 ca x^{2}-1^{2}. Diferența de pătrate poate fi descompusă în factori utilizând regula: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x+3\right)\left(x^{2}-3x+9\right)
Să luăm x^{3}+27. Rescrieți x^{3}+27 ca x^{3}+3^{3}. Suma de cuburi poate fi factorizate utilizând regula: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x^{2}-3x+9\right)
Rescrieți expresia completă descompusă în factori. Polinomul x^{2}-3x+9 nu este descompus în factori, pentru că nu are rădăcini raționale.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}