Direct la conținutul principal
Descompunere în factori
Tick mark Image
Evaluați
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

a+b=-2 ab=1\left(-8\right)=-8
Descompuneți expresia în factori prin grupare. Mai întâi, expresia trebuie să fie rescrisă ca x^{2}+ax+bx-8. Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
1,-8 2,-4
Deoarece ab este negativ, a și b au semne opuse. Deoarece a+b este negativ, numărul negativ are o valoare absolută mai mare decât valoarea pozitivă. Listează toate perechi de valori întregi care oferă produse -8.
1-8=-7 2-4=-2
Calculați suma pentru fiecare pereche.
a=-4 b=2
Soluția este perechea care dă suma de -2.
\left(x^{2}-4x\right)+\left(2x-8\right)
Rescrieți x^{2}-2x-8 ca \left(x^{2}-4x\right)+\left(2x-8\right).
x\left(x-4\right)+2\left(x-4\right)
Factor x în primul și 2 în al doilea grup.
\left(x-4\right)\left(x+2\right)
Scoateți termenul comun x-4 prin utilizarea proprietății de distributivitate.
x^{2}-2x-8=0
Polinomul de gradul doi se poate descompune în factori folosind transformarea ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), unde x_{1} și x_{2} sunt soluțiile ecuației de gradul doi ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)}}{2}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)}}{2}
Ridicați -2 la pătrat.
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2}
Înmulțiți -4 cu -8.
x=\frac{-\left(-2\right)±\sqrt{36}}{2}
Adunați 4 cu 32.
x=\frac{-\left(-2\right)±6}{2}
Aflați rădăcina pătrată pentru 36.
x=\frac{2±6}{2}
Opusul lui -2 este 2.
x=\frac{8}{2}
Acum rezolvați ecuația x=\frac{2±6}{2} atunci când ± este plus. Adunați 2 cu 6.
x=4
Împărțiți 8 la 2.
x=-\frac{4}{2}
Acum rezolvați ecuația x=\frac{2±6}{2} atunci când ± este minus. Scădeți 6 din 2.
x=-2
Împărțiți -4 la 2.
x^{2}-2x-8=\left(x-4\right)\left(x-\left(-2\right)\right)
Descompuneți în factori expresia inițială utilizând ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Înlocuiți x_{1} cu 4 și x_{2} cu -2.
x^{2}-2x-8=\left(x-4\right)\left(x+2\right)
Simplificați toate expresiile formei p-\left(-q\right) la p+q.