Rezolvați pentru x
x=-6
x=-2
Grafic
Partajați
Copiat în clipboard
x^{2}+12+8x=0
Adăugați 8x la ambele părți.
x^{2}+8x+12=0
Rearanjați polinomul pentru a-l pune în formă standard. Plasați termenii în ordine de la cel mai mare la puterea minimă.
a+b=8 ab=12
Pentru a rezolva ecuația, factorul x^{2}+8x+12 utilizând formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
1,12 2,6 3,4
Deoarece ab este pozitiv, a și b au același semn. Deoarece a+b este pozitiv, a și b sunt ambele pozitive. Listează toate perechi de valori întregi care oferă produse 12.
1+12=13 2+6=8 3+4=7
Calculați suma pentru fiecare pereche.
a=2 b=6
Soluția este perechea care dă suma de 8.
\left(x+2\right)\left(x+6\right)
Rescrieți expresia descompusă în factori \left(x+a\right)\left(x+b\right) utilizând valorile obținute.
x=-2 x=-6
Pentru a găsi soluții de ecuații, rezolvați x+2=0 și x+6=0.
x^{2}+12+8x=0
Adăugați 8x la ambele părți.
x^{2}+8x+12=0
Rearanjați polinomul pentru a-l pune în formă standard. Plasați termenii în ordine de la cel mai mare la puterea minimă.
a+b=8 ab=1\times 12=12
Pentru a rezolva ecuația, factor mâna stângă după grupare. Mai întâi, fața la stânga trebuie să fie rescrisă ca x^{2}+ax+bx+12. Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
1,12 2,6 3,4
Deoarece ab este pozitiv, a și b au același semn. Deoarece a+b este pozitiv, a și b sunt ambele pozitive. Listează toate perechi de valori întregi care oferă produse 12.
1+12=13 2+6=8 3+4=7
Calculați suma pentru fiecare pereche.
a=2 b=6
Soluția este perechea care dă suma de 8.
\left(x^{2}+2x\right)+\left(6x+12\right)
Rescrieți x^{2}+8x+12 ca \left(x^{2}+2x\right)+\left(6x+12\right).
x\left(x+2\right)+6\left(x+2\right)
Factor x în primul și 6 în al doilea grup.
\left(x+2\right)\left(x+6\right)
Scoateți termenul comun x+2 prin utilizarea proprietății de distributivitate.
x=-2 x=-6
Pentru a găsi soluții de ecuații, rezolvați x+2=0 și x+6=0.
x^{2}+12+8x=0
Adăugați 8x la ambele părți.
x^{2}+8x+12=0
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
x=\frac{-8±\sqrt{8^{2}-4\times 12}}{2}
Această ecuație este în formă standard: ax^{2}+bx+c=0. Înlocuiți a cu 1, b cu 8 și c cu 12 în formula rădăcinilor ecuațiilor de gradul al doilea, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 12}}{2}
Ridicați 8 la pătrat.
x=\frac{-8±\sqrt{64-48}}{2}
Înmulțiți -4 cu 12.
x=\frac{-8±\sqrt{16}}{2}
Adunați 64 cu -48.
x=\frac{-8±4}{2}
Aflați rădăcina pătrată pentru 16.
x=-\frac{4}{2}
Acum rezolvați ecuația x=\frac{-8±4}{2} atunci când ± este plus. Adunați -8 cu 4.
x=-2
Împărțiți -4 la 2.
x=-\frac{12}{2}
Acum rezolvați ecuația x=\frac{-8±4}{2} atunci când ± este minus. Scădeți 4 din -8.
x=-6
Împărțiți -12 la 2.
x=-2 x=-6
Ecuația este rezolvată acum.
x^{2}+12+8x=0
Adăugați 8x la ambele părți.
x^{2}+8x=-12
Scădeți 12 din ambele părți. Orice se scade din zero dă negativul său.
x^{2}+8x+4^{2}=-12+4^{2}
Împărțiți 8, coeficientul termenului x, la 2 pentru a obține 4. Apoi, adunați pătratul lui 4 la ambele părți ale ecuației. Acest pas face din partea stângă a ecuației un pătrat perfect.
x^{2}+8x+16=-12+16
Ridicați 4 la pătrat.
x^{2}+8x+16=4
Adunați -12 cu 16.
\left(x+4\right)^{2}=4
Factor x^{2}+8x+16. În general, atunci când x^{2}+bx+c este un pătrat perfect, el poate fi descompus în factori oricând ca \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{4}
Aflați rădăcina pătrată pentru ambele părți ale ecuației.
x+4=2 x+4=-2
Simplificați.
x=-2 x=-6
Scădeți 4 din ambele părți ale ecuației.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}