Direct la conținutul principal
Descompunere în factori
Tick mark Image
Evaluați
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

\left(x^{8}-1\right)\left(x^{8}+1\right)
Rescrieți x^{16}-1 ca \left(x^{8}\right)^{2}-1^{2}. Diferența de pătrate poate fi descompusă în factori utilizând regula: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{4}-1\right)\left(x^{4}+1\right)
Să luăm x^{8}-1. Rescrieți x^{8}-1 ca \left(x^{4}\right)^{2}-1^{2}. Diferența de pătrate poate fi descompusă în factori utilizând regula: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{2}-1\right)\left(x^{2}+1\right)
Să luăm x^{4}-1. Rescrieți x^{4}-1 ca \left(x^{2}\right)^{2}-1^{2}. Diferența de pătrate poate fi descompusă în factori utilizând regula: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x+1\right)
Să luăm x^{2}-1. Rescrieți x^{2}-1 ca x^{2}-1^{2}. Diferența de pătrate poate fi descompusă în factori utilizând regula: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)
Rescrieți expresia completă descompusă în factori. Următoarele polinoame nu sunt factorizate, deoarece nu au numerelor raționale rădăcini: x^{2}+1,x^{4}+1,x^{8}+1.