Calculați derivata în funcție de u
\frac{7}{8\sqrt[8]{u}}
Evaluați
u^{\frac{7}{8}}
Test
Algebra
5 probleme similare cu aceasta:
u ^ { \frac { 1 } { 8 } } \cdot u ^ { \frac { 3 } { 4 } }
Partajați
Copiat în clipboard
\sqrt[8]{u}\frac{\mathrm{d}}{\mathrm{d}u}(u^{\frac{3}{4}})+u^{\frac{3}{4}}\frac{\mathrm{d}}{\mathrm{d}u}(\sqrt[8]{u})
Pentru orice două funcții diferențiabile, derivata produsului celor două funcții este prima funcție înmulțită cu derivata celei de-a doua, plus a doua funcție înmulțită cu derivata primei.
\sqrt[8]{u}\times \frac{3}{4}u^{\frac{3}{4}-1}+u^{\frac{3}{4}}\times \frac{1}{8}u^{\frac{1}{8}-1}
Derivata unui polinom este suma derivatelor termenilor săi. Derivata unui termen constant este 0. Derivata lui ax^{n} este nax^{n-1}.
\sqrt[8]{u}\times \frac{3}{4}u^{-\frac{1}{4}}+u^{\frac{3}{4}}\times \frac{1}{8}u^{-\frac{7}{8}}
Simplificați.
\frac{3}{4}u^{\frac{1}{8}-\frac{1}{4}}+\frac{1}{8}u^{\frac{3}{4}-\frac{7}{8}}
Pentru a înmulți puterile cu aceleași baze, adunați exponenții lor.
\frac{3}{4}u^{-\frac{1}{8}}+\frac{1}{8}u^{-\frac{1}{8}}
Simplificați.
u^{\frac{7}{8}}
Pentru a înmulți puterile cu aceeași baze, adunați exponenții lor. Adunați \frac{1}{8} și \frac{3}{4} pentru a obține \frac{7}{8}.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}