Rezolvați pentru m (complex solution)
\left\{\begin{matrix}m=\frac{3x+n}{x^{2}}\text{, }&x\neq 0\\m\in \mathrm{C}\text{, }&x=0\text{ and }n=0\end{matrix}\right,
Rezolvați pentru m
\left\{\begin{matrix}m=\frac{3x+n}{x^{2}}\text{, }&x\neq 0\\m\in \mathrm{R}\text{, }&x=0\text{ and }n=0\end{matrix}\right,
Rezolvați pentru n
n=x\left(mx-3\right)
Grafic
Partajați
Copiat în clipboard
mx^{2}-n=3x
Adăugați 3x la ambele părți. Orice număr plus zero este egal cu el însuși.
mx^{2}=3x+n
Adăugați n la ambele părți.
x^{2}m=3x+n
Ecuația este în forma standard.
\frac{x^{2}m}{x^{2}}=\frac{3x+n}{x^{2}}
Se împart ambele părți la x^{2}.
m=\frac{3x+n}{x^{2}}
Împărțirea la x^{2} anulează înmulțirea cu x^{2}.
mx^{2}-n=3x
Adăugați 3x la ambele părți. Orice număr plus zero este egal cu el însuși.
mx^{2}=3x+n
Adăugați n la ambele părți.
x^{2}m=3x+n
Ecuația este în forma standard.
\frac{x^{2}m}{x^{2}}=\frac{3x+n}{x^{2}}
Se împart ambele părți la x^{2}.
m=\frac{3x+n}{x^{2}}
Împărțirea la x^{2} anulează înmulțirea cu x^{2}.
-3x-n=-mx^{2}
Scădeți mx^{2} din ambele părți. Orice se scade din zero dă negativul său.
-n=-mx^{2}+3x
Adăugați 3x la ambele părți.
-n=3x-mx^{2}
Ecuația este în forma standard.
\frac{-n}{-1}=\frac{x\left(3-mx\right)}{-1}
Se împart ambele părți la -1.
n=\frac{x\left(3-mx\right)}{-1}
Împărțirea la -1 anulează înmulțirea cu -1.
n=mx^{2}-3x
Împărțiți x\left(-mx+3\right) la -1.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}