Direct la conținutul principal
Calculați derivata în funcție de x
Tick mark Image
Evaluați
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

\frac{\left(2x^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2})-\left(-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+1)\right)}{\left(2x^{2}+1\right)^{2}}
Pentru orice două funcții diferențiabile, derivata câtului celor două funcții este numitorul înmulțit cu derivata numărătorului, minus numărătorul înmulțit cu derivata numitorului, totul împărțit la numitorul la pătrat.
\frac{\left(2x^{2}+1\right)\times 2\left(-1\right)x^{2-1}-\left(-x^{2}\times 2\times 2x^{2-1}\right)}{\left(2x^{2}+1\right)^{2}}
Derivata unui polinom este suma derivatelor termenilor săi. Derivata unui termen constant este 0. Derivata lui ax^{n} este nax^{n-1}.
\frac{\left(2x^{2}+1\right)\left(-2\right)x^{1}-\left(-x^{2}\times 4x^{1}\right)}{\left(2x^{2}+1\right)^{2}}
Faceți calculele.
\frac{2x^{2}\left(-2\right)x^{1}-2x^{1}-\left(-x^{2}\times 4x^{1}\right)}{\left(2x^{2}+1\right)^{2}}
Extindeți folosind proprietatea de distributivitate.
\frac{2\left(-2\right)x^{2+1}-2x^{1}-\left(-4x^{2+1}\right)}{\left(2x^{2}+1\right)^{2}}
Pentru a înmulți puterile cu aceleași baze, adunați exponenții lor.
\frac{-4x^{3}-2x^{1}-\left(-4x^{3}\right)}{\left(2x^{2}+1\right)^{2}}
Faceți calculele.
\frac{\left(-4-\left(-4\right)\right)x^{3}-2x^{1}}{\left(2x^{2}+1\right)^{2}}
Combinați termenii asemenea.
\frac{-2x^{1}}{\left(2x^{2}+1\right)^{2}}
Scădeți -4 din -4.
\frac{-2x}{\left(2x^{2}+1\right)^{2}}
Pentru orice termen t, t^{1}=t.